Let f(x)=3x-2, and let g(x)=f(f(f(f(x)))). If the domain of g is 1 <= x <= 2, compute the range of g.
f (f(x)) = 3(3x - 2) - 2 = 9x - 8
f (f(f(x))) = f (9x -8) = 3(9x - 8) - 2 = 27x - 26
f(f(f(f(x)))) = f(27x - 26) = 3 (27x -26) - 2 = 81x - 80 = g(x)
g ( 1) = 81(1) - 80 = 1
g(2) = 81(2) - 80 = 82
Domain of g = [ 1 , 82 ]