+0  
 
+17
2
4572
10
avatar+33615 

Here's a puzzle for when the site activity is low!

 

In the diagram below there are two quarter circles of radius 1 and 2 intersecting as shown.  What is the area of their intersection (i.e. the shaded region)? 

   circles

.

 Oct 28, 2015
edited by Alan  Oct 28, 2015

Best Answer 

 #6
avatar+26367 
+35

Here's a puzzle for when the site activity is low!

In the diagram below there are two quarter circles of radius 1 and 2 intersecting as shown.  What is the area of their intersection (i.e. the shaded region)?

 

\(circle_1: x^2 + y^2 = 4 \qquad r_1 = 2\\ circle_2: (x-2)^2 + (y-2)^2 = 1 \qquad r_2 = 1\\\)

 

intersections \(S_1 \text{ and } S_2\):

\(2 x_{s}^2 - 2a \cdot x_s + a^2 - r_1^2 = 0 \qquad a = \frac{3r_1^2-r_2^2}{2r_1} = \frac{11}{4}\\ \vec{S_1} =\dbinom{ \frac18(11-\sqrt{7}) }{ \frac18(11+\sqrt{7}) }\\ \vec{S_2} =\dbinom{ \frac18(11+\sqrt{7}) }{ \frac18(11-\sqrt{7}) }\)

 

sectors angels (cosinus-rule) \(\alpha_1 \text{ and } \alpha_2\):


\( \cos{(\alpha_1)} = \frac{57}{64} \qquad \alpha_1 = 27.0481105464^{\circ}\\ \cos{(\alpha_2)} = \frac{9}{16} \qquad \alpha_2 = 55.7711336722^{\circ}\\\)

Areas sectors \(A_{s_1} \text{ and } A_{s_2}\):

 

\( A_{s_1} = 4\pi \frac{27.0481105464^{\circ}}{360^{\circ}}\\ A_{s_2} = \pi \frac{55.7711336722^{\circ}}{360^{\circ}}\\\)

Areas triangles \(A_{t_1} \text{ and } A_{t_2}\):

\( A_{t_1} = \frac{1}{2} \cdot \left| \vec{S_2}\times \vec{S_1} \right| = \frac{11}{32}\sqrt{7}\\ A_{t_2} = \frac{1}{2} \cdot \left| \left[\vec{S_1}-\binom{2}{2}\right] \times \left[\vec{S_2}-\binom{2}{2}\right] \right|= \frac{5}{32}\sqrt{7} \)

 

\( \text{The area of their intersection }\quad A = A_{s_1}-A_{t_1}+A_{s_2}-A_{t_2}\)

 

\(A=\frac{\pi}{360}(4\cdot 27.0481105464^{\circ}+55.7711336722^{\circ})-\frac{ \sqrt{7} }{2}\\ A= 1.43085212603-1.32287565553\\ \mathbf{A=0.10797647050}\)

 Oct 28, 2015
 #2
avatar+128474 
+7

I could have solved this with some messy Algebra, but....I decided to cheat....LOL!!!

 

Placing the center of the larger circle at the origin, we have these two equations :

 

x^2 + y^2 = 4      and  (x - 2)^2 + (y - 2)^2 = 1

 

Here's a diagram :

 

 

The area of triangle ABC  =  2*sin(27.048)  = about .909 units^2

 

And the area of the sector ABC = about 944 units^2

 

Similarly, the area of triangle  DAB = (1/2)sin(55.771)  = about  .413  units^2

 

And the area of sector DAB = about .4867 units^2

 

So...the approximate total area  of the  area of intersection = [ .944 - .909] +  [ .4867 - .413] = about .1087 units^2

 

 

cool cool cool

 

OOPS....you are correct Alan....I have provided an edit......duh!!!....I think I mis-placed my decimal point.....Is my answer now correct???

 Oct 28, 2015
edited by CPhill  Oct 28, 2015
 #3
avatar+33615 
+5

Good try Melody, but this shows why it isn't correct:

circ1

Will now have a look at Chris's result (which still doesn't match what I'm expecting!)

 

Ah! If Chris could do adds and take aways correctly he would have the right answer!

 

 

.

 Oct 28, 2015
edited by Alan  Oct 28, 2015
 #4
avatar+118609 
0

Yes I know that Alan - That is why I wrote that it was not correct.

I suppose i should jut have deleted it.  I will delete it now.

 

I am working on a solution that uses co-ordinate geometry.  I am sure I can do it that way but it is quite painful especially if I want to keep the answer exact.  ://

 

There you go Chris, Yours is wrong too.   LOL

But your diagram is fantastic.    laugh

I am only joking Chris,  You answer is great too :))

 

 

 

Thanks for this distraction Alan.  I have enjoyed it.   laugh

 Oct 28, 2015
edited by Melody  Oct 28, 2015
edited by Melody  Oct 28, 2015
edited by Melody  Oct 28, 2015
 #5
avatar+33615 
0

I find it fascinating that the question is much more complicated than it appears to be at first sight.

 Oct 28, 2015
 #6
avatar+26367 
+35
Best Answer

Here's a puzzle for when the site activity is low!

In the diagram below there are two quarter circles of radius 1 and 2 intersecting as shown.  What is the area of their intersection (i.e. the shaded region)?

 

\(circle_1: x^2 + y^2 = 4 \qquad r_1 = 2\\ circle_2: (x-2)^2 + (y-2)^2 = 1 \qquad r_2 = 1\\\)

 

intersections \(S_1 \text{ and } S_2\):

\(2 x_{s}^2 - 2a \cdot x_s + a^2 - r_1^2 = 0 \qquad a = \frac{3r_1^2-r_2^2}{2r_1} = \frac{11}{4}\\ \vec{S_1} =\dbinom{ \frac18(11-\sqrt{7}) }{ \frac18(11+\sqrt{7}) }\\ \vec{S_2} =\dbinom{ \frac18(11+\sqrt{7}) }{ \frac18(11-\sqrt{7}) }\)

 

sectors angels (cosinus-rule) \(\alpha_1 \text{ and } \alpha_2\):


\( \cos{(\alpha_1)} = \frac{57}{64} \qquad \alpha_1 = 27.0481105464^{\circ}\\ \cos{(\alpha_2)} = \frac{9}{16} \qquad \alpha_2 = 55.7711336722^{\circ}\\\)

Areas sectors \(A_{s_1} \text{ and } A_{s_2}\):

 

\( A_{s_1} = 4\pi \frac{27.0481105464^{\circ}}{360^{\circ}}\\ A_{s_2} = \pi \frac{55.7711336722^{\circ}}{360^{\circ}}\\\)

Areas triangles \(A_{t_1} \text{ and } A_{t_2}\):

\( A_{t_1} = \frac{1}{2} \cdot \left| \vec{S_2}\times \vec{S_1} \right| = \frac{11}{32}\sqrt{7}\\ A_{t_2} = \frac{1}{2} \cdot \left| \left[\vec{S_1}-\binom{2}{2}\right] \times \left[\vec{S_2}-\binom{2}{2}\right] \right|= \frac{5}{32}\sqrt{7} \)

 

\( \text{The area of their intersection }\quad A = A_{s_1}-A_{t_1}+A_{s_2}-A_{t_2}\)

 

\(A=\frac{\pi}{360}(4\cdot 27.0481105464^{\circ}+55.7711336722^{\circ})-\frac{ \sqrt{7} }{2}\\ A= 1.43085212603-1.32287565553\\ \mathbf{A=0.10797647050}\)

heureka Oct 28, 2015
 #7
avatar+128474 
0

I just had my decimal point in the wrong place....Alan said mine is [fairly] correct....

 

Soooooo.....

 

A BIG GOLD STAR FOR HEUREKA AND ME....!!!!

 

 

 

And for Melody????....A BAG OF SWITCHES....!!!!

 

 

cool cool cool

 Oct 28, 2015
 #8
avatar
0

Area of the square :  2 x 2  = 4

Area of Big arc = 1/4 pi 2^2 = pi

Area of small arc = 1/4 pi 1^2 = 1/4 pi

Area OUTSIDE of Small arc = 4 - 1/4 pi

Area OUTSIDE of Big arc = 4 - pi

 

Add the two outside areas and subtract the square area

 

4-1/4pi + 4 - pi -4 = 4 - 5/4 pi = ,073 Square units

 Oct 28, 2015
 #9
avatar+33615 
0

This is the same as Melody's first answer Guest.  Good try, but unfortunately it isn't correct - see my first reply above to see why.

 Oct 28, 2015
 #10
avatar
0

Guest 8      Ahhhhh......sorry.  I didn't see the other answers before I posted .   I see your explanation of why my answer is WRONG  and it makes perfect sense '2C' it now.......   ha

 Oct 28, 2015

11 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar