blackpanther

avatar
Имя пользователяblackpanther
Гол1595
Membership
Stats
Вопросов 405
ответы 32

 #1
avatar+1595 
-4

Let's analyze the given relations:

 

f(x+1x​)=2f(x)​: This relation suggests a halving property.

 

If we substitute x=2n+12​, we get: f(2n+12​+12n+12​​)=2f(2n+12​)​

 

Simplifying the fraction inside the argument gives: f(2n+32​)=2f(2n+12​)​

 

f(1−x)=1−f(x): This relation suggests a complementary property.

 

If we substitute x=21​, we get: f(1−21​)=1−f(21​) Simplifying gives: f(21​)=21​

 

Now, let's consider the infinite series: S=f(32​)+f(52​)+f(72​)+⋯+f(2n+12​)+⋯

 

Using the halving property, we can rewrite this series as: S=2[f(52​)+f(72​)+⋯+f(2n+12​)+⋯]

 

Notice that the terms inside the brackets are almost the same as the original series, except for the first term. So, we can write:

 

S=2(S−f(32​))

 

Solving for S, we get: S=2f(32​)

 

To find f(32​), we can use the complementary property: f(1−32​)=1−f(32​) f(31​)=1−f(32​)

 

Now, using the halving property on f(31​): f(31​+131​​)=2f(31​)​ f(41​)=21−f(32​)​

 

We can continue this process to find a pattern: f(51​)=21−21−f(32​)​​ f(61​)=21−21−21−f(32​)​​​

 

We can see that this pattern converges to 21​ as we keep applying the halving property. Therefore, f(31​)=21​.

 

Substituting this back into the equation for f(32​), we get: 21​=1−f(32​) f(32​)=21​

 

Finally, substituting this value into the expression for S, we get: S=2⋅21​=1

 

So, the value of the given infinite series is 1.

20 дек. 2024 г.
 #1
avatar+1595 
0
23 нояб. 2024 г.
 #1
avatar+1595 
0
23 нояб. 2024 г.
 #2
avatar+1595 
0

To find the largest possible value of \( CF \), we'll use the relationship between the altitudes in a triangle and its area. The area \( \Delta \) of a triangle can be expressed using any of its altitudes:

 

\[
\Delta = \frac{1}{2} \times \text{base} \times \text{height}
\]

 

For triangle \( ABC \), we have the following relationships:

 

- \( \Delta = \frac{1}{2} \times BC \times AD = \frac{1}{2} \times CA \times BE = \frac{1}{2} \times AB \times CF \)

 

Let the side lengths be \( a = BC \), \( b = CA \), and \( c = AB \). Then:

 

\[
\Delta = \frac{1}{2} \times a \times 12 = \frac{1}{2} \times b \times 16 = \frac{1}{2} \times c \times CF
\]

 

This simplifies to:

 

\[
\Delta = 6a = 8b = \frac{1}{2} c \times CF
\]

 

Equating these expressions:

 

\[
6a = 8b \quad \text{and} \quad 6a = \frac{1}{2} c \times CF
\]

 

### Step 1: Solve for \( a \) and \( b \)


From \( 6a = 8b \):

 

\[
\frac{a}{b} = \frac{8}{6} = \frac{4}{3}
\]

 

Thus, \( a = \frac{4}{3}b \).

 

 

### Step 2: Substitute into \( 6a = \frac{1}{2} c \times CF \)


Substitute \( a = \frac{4}{3}b \) into \( 6a = \frac{1}{2} c \times CF \):

 

\[
6 \times \frac{4}{3}b = \frac{1}{2} c \times CF
\]

 

Simplifying:

 

\[
8b = \frac{1}{2} c \times CF \quad \text{so} \quad 16b = c \times CF
\]

 

### Step 3: Find the Maximum Value of \( CF \)


We need to maximize \( CF \), which is a positive integer. Since \( 16b = c \times CF \), and \( c \) and \( CF \) are integers, \( CF \) is maximized when \( c \) is minimized.

 

Given the relationship \( 6a = 8b \), \( a = \frac{4}{3}b \), and \( c = \frac{16b}{CF} \), the smallest integer value of \( c \) occurs when \( CF \) is as large as possible.

 

If \( CF = 16 \), then:

 

\[
16b = c \times 16 \quad \text{so} \quad c = b
\]

 

Since \( c \) is minimized and \( CF \) is maximized at \( 16 \), this is the largest possible value for \( CF \).

 

Thus, the largest possible value of \( CF \) is \( \boxed{24} \).

14 авг. 2024 г.