Alright, I'll take a shot. 
  
 It helps to inscribe the trapezoid within a rectangle. Using the boundaries: 
 \(x = 0\)
 \(y = 2\)
 \(y = 34/7\)
 \(x = 24/7\)
  
 The area of this rectangle is \({20\over7} \times {24\over7} = {480\over49}\)
  
 The area of the trapezoid is the area of the rectangle minus both triangles on the sides of the trapezoid.
  
 The first triangle has a height of \(6 \over7\) and a width of \(24 \over7\), making the area \(72 \over49\).
  
 The second triangle has a height of \(20 \over 7\) and a width of \(10 \over 7\), making the area \(100 \over 49\). 
  
 This means that the area of the triangle is: \({480\over49}-{72\over49}-{100\over49}=\color{brown}\boxed{308\over49}\)
  
 Here image: 
  
 