y = (3x + 15)/4 x2 + y2 = 36
Substituting: x2 + [ (3x + 15)/4 ]2 = 36
x2 + (9x2 + 45x + 225) / 16 = 36
16x2 + 9x2 + 45x + 225 = 576
25x2 + 45x - 351 = 0
Using the quadratic formula: x1 = [-9 + 12sqrt(3) ] / 5 or x2 = [-9 - 12sqrt(3) ] / 5
Substituting x1 into y = (3x + 15)/4 results in y1 = [12 + 9sqrt(3) ] / 5
Substituting x2 into y = (3x + 15)/4 results in y2 = [12 - 9sqrt(3) ] / 5
A = ( [-9 + 12sqrt(3) ] / 5 , [12 + 9sqrt(3) ] / 5 )
B = ( [-9 - 12sqrt(3) ] / 5 , [12 - 9sqrt(3) ] / 5 )
Now, to find the length of AB, place the values of (x1, y1) and (x2, y2) into the distance formula:
Distance = sqrt[ (x2 - x1)2 + (y2 - y1)2 ]