geno3141

avatar
Имя пользователяgeno3141
Гол23254
Membership
Stats
Вопросов 1
ответы 7089

 #1
avatar+23254 
0
5 апр. 2020 г.
 #1
avatar+23254 
+1

Each of these logs can be written into log form (that is, log10 form).

 

(log2x)(log3x)(log4x)(log5x)  =  [log(x)/log(2)]·[log(x)/log(3)]·[log(x)/log(4)]·[log(x)/log(5)]

                                            =  [log(x)]4 / [log(2)·log(3)·log(4)·log(5)] 

 

(log2x)(log3x)(log4x)  =  [log(x)/log(2)]· [log(x)/log(3)]· [log(x)/log(4)]

                                  =  [log(x)]3 / [log(2)·log(3)·log(4)]

(log2x)(log3x)(log5x)  =  [log(x)/log(2)]· [log(x)/log(3)]· [log(x)/log(5)]

                                  =  [log(x)]3 / [log(2)·log(3)·log(5)]

 

(log2x)(log4x)(log5x)  =  [log(x)/log(2)]· [log(x)/log(4)]· [log(x)/log(4)]

                                  =  [log(x)]3 / [log(2)·log(4)·log(5)]

 

(log3x)(log4x)(log5x)  =  [log(x)/log(3)]· [log(x)/log(4)]· [log(x)/log(4)]

                                  =  [log(x)]3 / [log(3)·log(4)·log(5)]

 

To get rid of denominators, multiply both sides by [log(2)·log(3)·log(4)·log(5):

--->   [log(x)]4  =  [log(x)]3 · [log(5)]  +  [log(x)]3 ·[log​(4)]  +  [log(x)]3 ·[log​(3)]  +  [log(x)]3 ·[log​(2)]

                       =  [log(x)]3 · [ log(5) + log(4) + log(3) + log(2) ]

 

Divide both sides by [log(x)]3 

--->   log(x)  =  log(5) + log(4) + log(3) + log(2)

                    =  log( 5 · 4 · 3 · 2 )

                    =  log( 120 )

 

--->  x = 120

3 апр. 2020 г.