In #28:
 ln(x² - 1):  ln(x) is defined only for positive values of x, so:  
      x² - 1 > 0     --->     x² > 1      --->     x > 1  or  x < -1
 In the denominator:  x² - 2x  must be positive:
      x² - 2x  >  0      --->     x(x - 2) > 0      
      either x > 0 and x - 2 > 0     or  x < 0 and x - 2 < 0
      --->     x > 2  or  x < 0
 Now put the first two answers with the second two answers and take the most restrictive cases:  x > 1 and x > 2 means x >2              X < -1 and x < 0 means x < -1
 Therefore, it will be continuous in the region where x < -1 and again in the region where x > 2 (but not between these two regions).