Formulas: sin3(x) = ¾·sin(x) - ¼·sin(3x) ---> sin3(2x) = ¾·sin(2x) - ¼·sin(6x)
cos3(x) = ¼·cos(3x) + ¾·cos(x) ---> cos3(2x) = ¼·cos(6x) + ¾·cos(2x)
[ sin3(2x) ] · cos(6x) + [ cos3(2x) ] · sin(6x)
= [ ¾·sin(2x) - ¼·sin(6x) ] · cos(6x) + [ ¼·cos(6x) + ¾·cos(2x) ] · sin(6x)
= ¾·sin(2x) · cos(6x) - ¼·sin(6x) · cos(6x) + ¼·cos(6x) · sin(6x) + ¾·cos(2x) · sin(6x)
= ¾·sin(2x) · cos(6x) + ¾·cos(2x) · sin(6x)
= ¾ [ sin(2x) · cos(6x) + cos(2x) · sin(6x) ]
But: sin(A + B) = sin(A)·cos(B) + cos(A)·sin(B)
= ¾ · sin( 2x + 6x )
= ¾ · sin( 8x )
Your turn ...