(a + 1/b)(b + 1/c)(c + 1/a)
= [ (a + 1/b)(b + 1/c) ] (c + 1/a)
= [ ab + a/c + 1 + 1/bc ] (c + 1/a)
= abc + b + a + 1/c + c + 1/a + 1/b + 1/abc
= abc + (a + b + c) + (1/a + 1/b + 1/c) + 1/abc
(1 + 1/a)(1 + 1/b)(1 + 1/c)
= [ (1 + 1/a)(1 + 1/b) ]·(1 + 1/c)
= [ 1 + 1/b + 1/a + 1/ab ]·(1 + 1/c)
= 1 + 1/c + 1/b + 1/bc + 1/a + 1/ac + 1/ab + 1/abc
= 1 + (1/a + 1/b + 1/c) + (1/ab + 1/ac + 1/bc) + 1/abc
Setting these two equal to each other:
abc + (a + b + c) + (1/a + 1/b + 1/c) + 1/abc = 1 + (1/a + 1/b + 1/c) + (1/ab + 1/ac + 1/bc) + 1/abc
Subtracting like terms:
abc + (a + b + c) = 1 + (1/ab + 1/ac + 1/bc)
Rewriting:
abc + (a + b + c) = 1 + (c/abc + b/abc + a/abc)
Factoring:
abc + (a + b + c) = 1 + (a + b + c)/abc
Since abc = 13:
13 + (a + b + c) = 1 + (a + b + c)/13
Subtracting:
12 + (a + b + c) = (a + b + c)/13
Multiplying both sides by 13:
156 + 13(a + b + c) = (a + b + c)
Subtracting (a + b + c) from both sides:
156 + 12(a + b + c) = 0
Subtracting 156 from both sides:
12(a + b + c) = -156
Dividing:
a + b + c = -13