x + y + xy = 19 ---> y + xy = 19 - x ---> y(1 + x) = 19 - x
---> y = (19 - x) / (x + 1) [Equation #1]
y + z + yz = 29 ---> y + yz = 29 - z ---> y(1 + z) = 29 - z
---> y = (29 - z) / (z + 1) [Equation #2]
z + x + xz = 23 ---> x + zx = 23 - z ---> x(1 + z) = 23 - z
---> x = (23 - z) / (z + 1) [Equation #3]
Substituting Equation #3 into Equations #1:
y = (19 - x) / (x + 1) ---> y = [ 19 - (23 - z) / (z + 1) ] / [ (23 - z) / (z + 1) + 1 ]
Multiplying numerator and denominator by (z + 1)
---> y = [ 19(z + 1) - (23 - z) ] / [ (23 - z) + 1(z + 1) ]
---> y = [ 19z + 19 - 23 + z ] / [ 23 - z + z + 1 ]
---> y = [ 20z - 4 ] / [ 24 ]
---> y = (5z - 1) / 6 [Equation #4]
Setting Equation #2 and Equation #4 equal to each other:
(29 - z) / (z + 1) = (5z - 1) / 6
Cross-multiplying: 6(29 - z) = (5z - 1)(z + 1)
174 - 6z = 5z2 + 5z - z + 1
0 = z2 + 2z - 35
0 = (z + 7)(z - 5)
So: either z = -7 or z = 5 (the problem specifies that z must be positive ---> z = 5)
Equation #2: y = (29 - z) / (z + 1) ---> y = (29 - z) / (5 + 1) ---> y = 4
Equation #3: x = (23 - z) / (z + 1) ---> x = (23 - 5) / (5 + 1) ---> x = 3