$${\mathtt{4}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}} = {\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{8}}{\mathtt{\,\small\textbf+\,}}{\mathtt{3}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{12}} \Rightarrow {\mathtt{x}} = {\mathtt{4}}$$
.