$${\mathtt{5}}{\mathtt{\,\times\,}}{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\mathtt{e}}\right)}^{\left({\mathtt{\,-\,}}{\mathtt{4.787}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.55}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)} = {{\mathtt{e}}}^{\left({\mathtt{\,-\,}}{\mathtt{4.787}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1.55}}{\mathtt{\,\times\,}}{\mathtt{x}}\right)} \Rightarrow {{\mathtt{e}}}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)} = {\mathtt{5}}{\mathtt{\,\times\,}}{\left({\mathtt{e}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)} \Rightarrow {{\mathtt{e}}}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)} = {\mathtt{5}}{\mathtt{\,\times\,}}{\left({\mathtt{e}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}^{\left({\frac{\left({\mathtt{1\,550}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{4\,787}}\right)}{{\mathtt{1\,000}}}}\right)}$$
.