If it gets me answers! You can call it bribery all you want.
$$\\34\frac{1}{8}\times\frac{14}{51}\div1\frac{30}{68}\\\\
\frac{34\times8+1}{8}\times\frac{14}{51}\div\frac{1\times30+68}{68}\\\\
\frac{273}{8}\times\frac{14}{51}\div\frac{98}{68}\\\\
\frac{273}{8}\times\frac{14}{51}\times\frac{68}{98}\\\\
\frac{273}{8}\times\frac{14\div14}{51}\times\frac{98\div14}{68}\\\\
\frac{273}{8}\times\frac{1}{51}\times\frac{7}{68}\\\\
\frac{273}{8\div4}\times\frac{1}{51}\times\frac{7}{68\div4}\\\\
\frac{273}{2}\times\frac{1}{51}\times\frac{7}{17}\\\\
\frac{273}{2}\times\frac{1}{51\div17}\times\frac{7}{17\div17}\\\\
\frac{273}{2}\times\frac{1}{3}\times\frac{7}{1}\\\\$$
$$\\\frac{273\div3}{2}\times\frac{1}{3\div3}\times\frac{7}{1}\\\\
\frac{91}{2}\times\frac{1}{1}\times\frac{7}{1}\\\\
\frac{91\div7}{2}\times\frac{1}{1}\times\frac{7\div7}{1}\\\\
\frac{13}{2}\times\frac{1}{1}\times\frac{1}{1}\\\\
\frac{13}{2}\times1\times1\\\\
\frac{13\times1}{2\times1}\\\\
\frac{13}{2}\\\\
\frac{13\times1}{2\times1}\\\\
\frac{13}{2}\\\\
6\frac{1}{2}$$
(The end part was just to show my workings when multiplying by 11 it's obviously the same.)
$${\frac{\left({\mathtt{34}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{1}}}{{\mathtt{8}}}}\right){\mathtt{\,\times\,}}\left({\frac{{\mathtt{14}}}{{\mathtt{51}}}}\right)}{\left({\mathtt{1}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{30}}}{{\mathtt{68}}}}\right)}} = {\frac{{\mathtt{13}}}{{\mathtt{2}}}} = {\mathtt{6.5}}$$
.