1. integral of x^2(2-x)^0.5 dx
\(\int\;x^2\sqrt{2-x}\;dx\\~\\ \)
2-x has to be positive so I am going to substitute it for y^2
\(2-x=y^2\\ 2-y^2=x\\ x=2-y^2\\ \frac{dx}{dy}=-2y\\ dx=2y\;dy \)
\(\int\;x^2\;\sqrt{2-x}\;dx\\ =\int \;(2-y^2)^2*\sqrt{y^2}\;*2y\;dy\\ =\int \;(4-4y^2+y^4)*y\;*2y\;dy\\ =\int \;2y^2(4-4y^2+y^4)\;dy\\ =\int \;(8y^2-8y^4+2y^6)\;dy\\ =\frac{8y^3}{3}-\frac{8y^5}{5}+\frac{2y^7}{7}+c\\~\\ =\frac{8(2-x)^{1.5}}{3}-\frac{8(2-x)^{2.5}}{5}+\frac{2(2-x)^{3.5}}{7}+c\\~\\\)
I haven't had much practice with these but that looks alright :)
I think so anyway.