I have another method for the second question. I found the exact answer and used no trig.
As others have already shown, triangle BEC is isosceles so BE=BC=8
DE=8-2=6 units.

Let angle ECD= alpha
It follows that in triangle BCD
< BCD = theta-alpha
< CDB =180-theta
< DBC = alpha
Now consider triangle ABE
<ABE = theta-alpha
<BEA=180-theta
<EAB = alpha
so
Triangle BCD is similar to triangle ABE (3 equal angles)
Hence
\(\frac{AB}{BE}=\frac{BC}{DC}\\ \frac{AB}{8}=\frac{8}{DC}\\ AB=\frac{64}{DC}\\\)
Also triangle ABC and triangle CED are both isosceles triangles with base angles of theta degrees so they are also similar.
so
\(\frac{AB}{BC}=\frac{DC}{DE}\\ \frac{AB}{8}=\frac{DC}{6}\\ AB=\frac{4*DC}{3}\\~\\ so\\~\\ \frac{64}{DC}=\frac{4*DC}{3}\\ \frac{64*3}{4}=DC^2\\ DC=\frac{8*\sqrt3}{2}\\ DC=4\sqrt3\;\;units\\\)
\(AB=\frac{64}{DC}\\ AB=\frac{64}{4\sqrt3}\\ AB=\frac{16}{\sqrt3}\\ AB=\frac{16\sqrt3}{3}\;\;units\\~\\ AB \approx 9.2376\;\;units\)
.