Hi guest,
This is a good question, if you appreciate your answer and you will use this site again, how about becoming a members. Members often get priority when we are answering question - especially polite members that are trying hard to learn from our answers. :)
Becoming a member is easy - you just need an email address but you won't get nuisance emails sent to you, it is just used for validation purposes :)
-1500*[(1-(1+.07)^-N)/(.07)]+40396.2*(1+.07)^-N-10000=0
\(-1500*\frac{1-(1+.07)^{-N}}{0.07}+40396.2*(1+.07)^{-N}-10000=0\\ -1500*\frac{1-(1.07)^{-N}}{0.07}+\frac{40396.2}{(1.07)^{N}}-10000=0\\ \frac{-150000[1-(1.07)^{-N}]}{7}+\frac{40396.2}{(1.07)^{N}}-10000=0\\ \frac{-150000[1-(1.07)^{-N}]}{1}+\frac{7*40396.2}{(1.07)^{N}}-70000=0\\ -220000+150000(1.07)^{-N}+\frac{7*40396.2}{(1.07)^{N}}=0\\ -220000(1.07)^{N}+150000(1.07)^{-N}(1.07)^{N}+7*40396.2=0\\ -220000(1.07)^{N}+150000+282773.4=0\\ -220000(1.07)^{N}+432773.4=0\\ 220000(1.07)^{N}=432773.4\\ (1.07)^{N}=\frac{432773.4}{220000}\\ (1.07)^{N}\approx 1.967151818\\ log(1.07)^{N}\approx log(1.967151818)\\ Nlog(1.07)\approx log(1.967151818)\\ N\approx \frac{ log(1.967151818}{log(1.07)}\\ \)
log(1.967151818)/log(1.07) = 10.0000034615204508
N = 10 approximately.
check:
-1500*((1-(1+.07)^-10.0000034615204508)/(.07))+40396.2*(1+.07)^(-10.0000034615204508)-10000 = 0.0000029048699091459732438786634643045252961939322074922
Well, that is pretty close to zero :)))