Melody

avatar
Имя пользователяMelody
Гол118728
Membership
Stats
Вопросов 900
ответы 33648

-4
850
3
avatar+118728 
Melody  11 февр. 2022 г.
 #87
avatar+118728 
0

BINOMIALS

 

\binom30^2 + \binom31^2 + \binom32^2 + \binom33^2

 

\(\binom30^2 + \binom31^2 + \binom32^2 + \binom33^2\)

 

 

\binom{n}{0}^2 + \binom{n}{1}^2 + \cdots + \binom{n}{n}^2 = \text{ something}.

 

\(\binom{n}{0}^2 + \binom{n}{1}^2 + \cdots + \binom{n}{n}^2 = \text{ something}.\)

 

----------------------------------------------------------------------------------------------------------

 

FRACTIONS

 

\cfrac   and    \dfrac

 

 

 

\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}

 

\(\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}\)

 

 

More here

http://tex.stackexchange.com/questions/59747/proper-display-of-fractions

 

On that reference site there is also a \dfrac{}{} used.

 

2-\frac{2}{1-\left(\frac{2}{2-\frac{2}{x^2}}\right)}\quad

2-\dfrac{2}{1-\left(\dfrac{2}{2-\dfrac{2}{x^2}}\right)}\quad

2-\cfrac{2}{1-\left(\cfrac{2}{2-\cfrac{2}{x^2}}\right)}\quad

2-\dfrac{2}{1-\left(\cfrac{2}{2-\dfrac{2}{x^2}}\right)}

 

\(2-\frac{2}{1-\left(\frac{2}{2-\frac{2}{x^2}}\right)}\quad 2-\dfrac{2}{1-\left(\dfrac{2}{2-\dfrac{2}{x^2}}\right)}\quad 2-\cfrac{2}{1-\left(\cfrac{2}{2-\cfrac{2}{x^2}}\right)}\quad 2-\dfrac{2}{1-\left(\cfrac{2}{2-\dfrac{2}{x^2}}\right)}\)

 

 

Mmm,   I can't see the difference between the cfrac and the dfrac     :indecision

 

 

 

*

4 дек. 2016 г.
 #7
avatar+118728 
0

LaTex discussion on displaying fractions :)

Heureka, I thought maybe you would like to add to this post :/     indecision

 

I have also been looking at the Latex that is used in this question.

I found this reference to using Latex for fractions but i will admit i have not properly digested it yet.

 

http://tex.stackexchange.com/questions/59747/proper-display-of-fractions

 

This is the question:

\(\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}\)

 

And this is the command fot it.

 

\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}

 

I have not used   \cfrac{}{}   before.

On that reference site there is also a \dfrac{}{} used.

 

If anyone would like to discuss how these are used that would because I haven't fully comprehended what they are about.

3 дек. 2016 г.
 #6
avatar+118728 
0

Hi Alan

I have been toying this question,  I have only just worked out the relevance of the 2 answers :D

Silly me :)

Here is Alan's earlier answer:

http://web2.0calc.com/questions/find-the-value-of_3

 

 

 

INFINITE CONTINUED FRACTION 

 

\( \begin{align} Let\\ x&=\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}\\ so\\ x&=\cfrac{1}{1 + \cfrac{1}{2 +x}}\\~\\ x&=\cfrac{1}{\cfrac{2+x}{2+x} + \cfrac{1}{2 +x}}\\~\\ x&=\cfrac{1}{\frac{3+x}{2+x} }\\~\\ x&=\cfrac{2+x}{3+x}\\~\\ 3x+x^2&=2+x\\ x^2+2x-2&=0\\ x&=\frac{-2\pm\sqrt{4+8}}{2}\\ x&=\frac{-2\pm2\sqrt{3}}{2}\\ x&=-1\pm\sqrt{3}\\ \end{align}\)

 

BUT it can be seen that x is positive so the only valid solutions is \(x=\sqrt3-1\)

 

SO


\(\boxed{\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \dotsb}}}}\\~\\ =\sqrt3-1}\)

   

 

WHEREAS IF IT IS NOT AN INFINITE CONTINUED FRACTION THEN

 

\(\boxed{\cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 }}}}\\~\\ =\frac{8}{11}}\)

.
3 дек. 2016 г.