Melody

avatar
Имя пользователяMelody
Гол118728
Membership
Stats
Вопросов 900
ответы 33648

-4
850
3
avatar+118728 
Melody  11 февр. 2022 г.
 #1
avatar+118728 
0
20 дек. 2016 г.
 #2
avatar+118728 
+1

Hi Kulki   

It is nice to meet you :)

 

limit( ((((x+2)/(x-2)))^(x+1)), x=infinity )

 

Mmm  it is good that you use lots of brackets but maybe if some of them were square brackets it might be easier to make sense of.   Not to worry, lots of backets is good.

 

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\left[ \frac{x+2}{x-2}       \right]^{x+1}\)

 

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\left[ \frac{x+2}{x-2}       \right]^{x+1}\\ =\displaystyle\lim_{x\rightarrow\infty}\;e^{ln\left[ \frac{x+2}{x-2}       \right]^{x+1}}\\ =\displaystyle\lim_{x\rightarrow\infty}\;e^{(x+1)ln\left[ \frac{x+2}{x-2}       \right]}\\ =\displaystyle\lim_{x\rightarrow\infty}\;e^{x(1+\frac{1}{x})ln\left[ \frac{x+2}{x-2}       \right]}\\ =\displaystyle\lim_{x\rightarrow\infty}\;e^{x(\frac{x+1}{x})ln\left[ \frac{x+2}{x-2}       \right]}\\ =\displaystyle\lim_{x\rightarrow\infty}\;e^{xln\left[ \frac{x+2}{x-2}      \right]*(\frac{x+1}{x}) }\\ \text{The limit as x tends to infinity of (x+1)/x = 1 so}\\ =\displaystyle\lim_{x\rightarrow\infty}\;e^{xln\left[ \frac{x+2}{x-2}      \right]}\\ =e^\left[{\displaystyle\lim_{x\rightarrow\infty}\;{xln\left[ \frac{x+2}{x-2}       \right]}}\right]\\ \)

 

Now  I will look at the nw limit

\(\displaystyle\lim_{x\rightarrow\infty} \frac{ln\left[ \frac{x+2}{x-2} \right]}{\frac{1}{x}}\\ \qquad \text{The numerator and the denominator both tend to 0 so I can use L'Hopital's rule}\\ \qquad \frac{d}{dx}\;ln\left[ \frac{x+2}{x-2}\right]=\frac{(x-2)-(x+2)}{(x-2)^2}=\frac{-4}{(x-2)^2}\\ \qquad \frac{d}{dx}\;x^{-1}=-x^{-2}=\frac{-1}{x^2}\\ \qquad =\displaystyle\lim_{x\rightarrow\infty}\left[ \frac{-4}{(x-2)^2}\div \frac{-1}{x^2}\right]\\ \qquad=\displaystyle\lim_{x\rightarrow\infty}\left[ \frac{4x^2}{(x-2)^2}\right]\\ \qquad=\displaystyle\lim_{x\rightarrow\infty}\;4\left[ \frac{x^2}{(x-2)^2}\right]\\ \qquad=\displaystyle\lim_{x\rightarrow\infty}\;4\left[ \frac{x^2}{x^2-4x+4} \;\;\;\frac{\div x^2}{\div x^2}\right]\\ \qquad=\displaystyle\lim_{x\rightarrow\infty}\;4\left[ \frac{1}{1-\frac{4}{x}+\frac{4}{x^2}} \right]\\ \qquad=4\left(\frac{1}{1-0+0}\right)\\ \qquad=4\\ \text{so the original limit}=e^4 \)

 

 

\(\displaystyle\lim_{x\rightarrow\infty}\;\left[ \frac{x+2}{x-2}       \right]^{x+1}=e^4\)

.
19 дек. 2016 г.
 #2
avatar+118728 
0
18 дек. 2016 г.