Melody

avatar
Имя пользователяMelody
Гол118727
Membership
Stats
Вопросов 900
ответы 33648

-4
850
3
avatar+118727 
Melody  11 февр. 2022 г.
 #1
avatar+118727 
0
9 февр. 2017 г.
 #1
avatar+118727 
+15

Two pipes together drain a wastewater holding tank in 6 hours. If used alone to empty the tank, one takes 2 hours longer than the other. How long does each take to empty the tank when used alone?

 

I always have an awful problem getting my head around questions like this so I made the question easier to see how it would work.

 

I said:

Let the tank be  36L     and let the times to drain be 4 hours and 6 hours respectively

So tank 1 will flow at 36/4 = 9L/hour

and tank 2 will flow at 36/6 = 6L/hour

if they are both draining then the water will flow at   (9+6) L/hour = 15L/hour

so 

\(\frac{15L}{1hour}=\frac{15L*\frac{36}{15}}{1hour*\frac{36}{15}}=\frac{36L}{2.4hours}\)

It will take 2.4 hours to drain the tank if both pipes are emptying it.

 

-----------------

Ok now I can do the same thing for your more difficult problem.

 

Let the tank be V litres

Pipe1 will take t hours to drain it so that is    \(\frac{V}{t}\;\;litres/hour\)

Pipe2 will take (t+2) hours to drain it so that is   \(\frac{V}{t+2}\;\;litres/hour\)

 

So the 2 pipes together will drain

       \(\frac{V}{t}+\frac{V}{t+2}\;\;litres/hour\\ =V[\frac{1}{t}+\frac{1}{t+2}]\;\;litres/hour\\ =V[\frac{(t+2)+t}{t(t+2)}]\;\;litres/hour\\ =\frac{V\left[\frac{2t+2}{t^2+2t}\right]\;\;litres}{1hour}\\ =\frac{V\left[\frac{2t+2}{t^2+2t}\right]\left[\frac{t^2+2t}{2t+2}\right]\;\;litres}{\left[\frac{t^2+2t}{2t+2}\right]hour}\\ =\frac{V\;\;litres}{\left[\frac{t^2+2t}{2t+2}\right]hour}\\\)

 

So it will take    

\(\frac{t^2+2t}{2t+2}\;\;\text{hours to drain the tank}\\~\\ now\\ \frac{t^2+2t}{2t+2}=6\\ t^2+2t=6(2t+2)\\ t^2+2t=12t+12\\ t^2-10t-12=0\\ t=\frac{10\pm\sqrt{100+48}}{2}\\ t=\frac{10\pm\sqrt{148}}{2}\\ t=\frac{10\pm2\sqrt{37}}{2}\\ t=5\pm\sqrt{37}\\ \text{t cannot be negative so }\\t=5+\sqrt{37}\approx 11.08276253\approx 11hours\;\;4\;minutes \;and\;58\;seconds\\\)

 

Which is near enough to 11 hours and 5 minutes

So the pipes will take 11 hours and 5 minutes and 13 hours and 5 min respectively to empty the tank on their own.

 

Since they take 6 hours together that sounds reasonable    laugh

8 февр. 2017 г.