Hi Veteran
I will assume that x is a acute angle, is that ok?
Draw a right angled triangle. Mark one acute angle as x.
The adjacent side is \(2\sqrt6\)
The hypotenuse is 5
So the opposite side is \(\sqrt{(5^2-2\sqrt6)^2}=\sqrt{(25-24)}=1\)
\(cos(x)=\frac{2\sqrt6}{5}\\ sin(x)=\frac{1}{5}\\ tan(x)=\frac{sinx}{cosx}=\frac{1}{5}\div \frac{2\sqrt6}{5}=\frac{1}{2\sqrt6}\)
\(sin(2x) =2sinxcosx =2*\frac{1}{5}*\frac{2\sqrt6}{5}=\frac{4\sqrt6}{25}\\~\\ cos(2x)=cos^2x-sin^2x=\frac{24}{25}-\frac{1}{25}=\frac{23}{25}\\~\\ tan(2x)\\ =\frac{2tanx}{1-tan^2x}\\ =\frac{2}{2\sqrt6}\div (1-\frac{1}{24)}\\ =\frac{1}{\sqrt6}\div \frac{23}{24}\\ =\frac{24}{23\sqrt6}\\ =\frac{24\sqrt6}{23*6}\\ =\frac{4\sqrt6}{23}\\ \)
.