Integrate the following: ∫x^2 sin^3 (x) dx. Also, please show steps of solution.
I thank you for any help.
\(\int\;x^2sin^3x\;dx\\ =\int\;x^2sinx\;sin^2x\;dx\\ =\int\;x^2sinx\;sin^2x\;dx\\ \qquad \qquad cos2x=cos^2x-sin^2x\\ \qquad \qquad cos2x=1-2sin^2x\\ \qquad \qquad 2sin^2x=1-cos2x\\ \qquad \qquad sin^2x=\frac{1-cos2x}{2}\\ =\int\;x^2sinx\;\frac{1-cos2x}{2}\;dx\\ =\int\;\;\frac{x^2sin(x)-x^2sinxcos(2x)}{2}\;dx\\ =\frac{-1}{2}\int\;[x^2sin(x)cos(2x)-x^2sin(x)]\;dx\\ \)
\(\qquad \qquad sin(\alpha-\beta)+sin(\alpha+\beta)\\ \qquad \qquad =sin(\alpha)cos(\beta)-sin(\beta)cos(\alpha)+sin(\alpha)cos(\beta)+sin(\beta)cos(\alpha)\\ \qquad \qquad =2sin(\alpha)cos(\beta)\\ \qquad \qquad so\\ \qquad \qquad 2sin(x)cos(2x)=sin(x-2x)+sin(x+2x)\\ \qquad \qquad 2sin(x)cos(2x)=sin(-x)+sin(3x)\\ \qquad \qquad 2sin(x)cos(2x)=sin(3x)-sin(x)\\ \qquad \qquad sin(x)cos(2x)=\frac{1}{2}[sin(3x)-sin(x)]\\ =\frac{-1}{2}\int\;[x^2sin(x)cos(2x)-x^2sin(x)]\;dx\\ =\frac{-1}{2}\int\;\frac{x^2}{2}[sin(3x)-sin(x)]-x^2sin(x)]\;dx\\ =\frac{-1}{2}\int\;[\frac{x^2}{2}sin(3x)-\frac{x^2}{2}sin(x)-x^2sin(x)]\;dx\\ =\frac{-1}{2}\int\;[\frac{x^2}{2}sin(3x)-\frac{3x^2}{2}sin(x)]\;dx\\ =\frac{-1}{4}\left(\int\;[x^2sin(3x)]dx\;-\;\int[3x^2sin(x)]\;dx\right)\\ \text{Now work out each of these two integral seperately using integration by parts.}\)
Maybe I will finish it later (it is 1:36am) anyway, that is a good start for you :)