Maybe it should just be simplify????
tan x cos 2x + tan x + sin 2 x
\(tan x *cos 2x + tan x + sin 2 x\\ =\frac{sinx}{cosx} *(cos^2x-sin^2x)+ \frac{sinx}{cosx} + 2sinxcosx\\ =sinxcosx-\frac{sin^3x}{cosx}+ \frac{sinx}{cosx} + 2sinxcosx\\ =3sinxcosx-\frac{sin^3x}{cosx}+ \frac{sinx}{cosx} \\ =3sinxcosx- \frac{sinx}{cosx} (sin^2x-1)\\ =3sinxcosx- \frac{sinx}{cosx} (-cos^2x)\\ =3sinxcosx+ (sinxcosx)\\ =4sinxcosx\\ =2sin2x \)
Lets see if I could have done this more simply....
\( tan x cos 2x + tan x + sin 2 x\\ = tan x (cos^2x-sin^2x) + tan x + sin 2 x\\ = tan x (cos^2x-sin^2x+1) + sin 2 x\\ = tan x (cos^2x+cos^2x) + sin 2 x\\ =\frac{sinx}{cosx} (2cos^2x) + sin 2 x\\ =2sinxcosx + sin 2 x\\ =sin2x + sin 2 x\\ =2sin2x \\\)
So it can be seen that
tan x cos 2x + tan x = sin 2 x
which I guess was meant to be the question in the first place. (as hectictar and CPhill have already noted. Thanks guys. :)