Thanks very much guest.
ok I'll do the proof in full
Consider minor arc LB
This subtends the angle LRB at the circumference. And subtends angle LNB at the centre
So < LNB= 2*< LRB
\(Let \quad \angle LRB=\theta \qquad so \qquad \angle LNB=2\theta\)
Consider minor arc RD
This subtends the < RBD at the circumference. And subtends
So
\(Let \quad \angle RBD=\alpha \qquad so \qquad \angle RND=2\alpha\)
\(Consider\quad \triangle RBE\\ \angle LRB=\angle RBE+\angle REB \qquad \text{(Exterior angle of a triangle = sum of opposite interior angles)}\\ \theta=\alpha+\angle REB\\ \angle REB=\theta-\alpha\\ \angle REB=\frac{1}{2} (2\theta-2\alpha)\\ \angle REB=\frac{1}{2} (\angle LNB-\angle RND)\\ \)
