Melody

avatar
Имя пользователяMelody
Гол118692
Membership
Stats
Вопросов 900
ответы 33647

-6
837
3
avatar+118692 
Melody  11 февр. 2022 г.
 #1
avatar+118692 
+1
28 дек. 2021 г.
 #7
avatar+118692 
+1

 

\((f'(x))^2 = f(x)f''(x)\\~\\ \frac{f'(x)}{f(x)} = \frac{f''(x)}{f'(x)}\\~\\ \int\frac{f'(x)}{f(x)}dx = \int\frac{f''(x)}{f'(x)}dx\\~\\ ln(f(x))+lnC=ln(f'(x))\qquad \text{Where lnC is a constant}\\~\\ ln(Cf(x))=ln(f'(x))\\~\\ Cf(x)=f'(x)\\~\\ C=\frac{f'(x)}{f(x)}\\~\\ \int C\;dx=\int \frac{f'(x)}{f(x)}\;dx\\~\\ Cx+k=ln(f(x))\\~\\ e^{Cx+k}=e^{ln(f(x))}\\~\\ f(x)=e^{Cx+k}\)

 

    Sub f(0)=1  and you get    k=0

 

\(f(x)=e^{Cx}\)

 

  \(​​​​f(x)=e^{Cx}\\ ​​​​f'(x)=Ce^{Cx}\\ ​​​​f''(x)=C^2e^{Cx}\\ ​​​​f'''(x)=C^3e^{Cx}\\ ​​​​f''''(x)=C^4e^{Cx}\\ \quad given\;\;f''''(0)=9\\ \quad \;C^4=9\\ \quad \;C=\pm\sqrt3\\ \)    

\(​​​​f'(x)=\sqrt3\;e^{\sqrt3\;x}\qquad or \qquad f'(x)=-\sqrt3\;e^{-\sqrt3\;x}\\ so\\ ​​​​f'(0)=\sqrt3\qquad or \qquad f'(0)=-\sqrt3\\\)

 

 

 

 

 

LaTex

(f'(x))^2 = f(x)f''(x)\\~\\
\frac{f'(x)}{f(x)} = \frac{f''(x)}{f'(x)}\\~\\
\int\frac{f'(x)}{f(x)}dx = \int\frac{f''(x)}{f'(x)}dx\\~\\
ln(f(x))+lnC=ln(f'(x))\qquad \text{Where lnC is a constant}\\~\\
ln(Cf(x))=ln(f'(x))\\~\\
Cf(x)=f'(x)\\~\\
C=\frac{f'(x)}{f(x)}\\~\\
\int C\;dx=\int \frac{f'(x)}{f(x)}\;dx\\~\\
Cx+k=ln(f(x))\\~\\
e^{Cx+k}=e^{ln(f(x))}\\~\\
f(x)=e^{Cx+k}

 

​​​​f(x)=e^{Cx}\\
​​​​f'(x)=Ce^{Cx}\\
​​​​f''(x)=C^2e^{Cx}\\
​​​​f'''(x)=C^3e^{Cx}\\
​​​​f''''(x)=C^4e^{Cx}\\
\quad given\;\;f''''(0)=9\\
\quad \;C^4=9\\
\quad \;C=\pm\sqrt3\\

 

​​​​f'(x)=\sqrt3\;e^{\sqrt3\;x}\qquad or \qquad f'(x)=-\sqrt3\;e^{-\sqrt3\;x}\\
so\\
​​​​f'(0)=\sqrt3\qquad or \qquad f'(0)=-\sqrt3\\

27 дек. 2021 г.