\(\frac{4}{27}\left(2^{\frac{3+m}{3}}+2^{\frac{m}{3}}\right)^3\\ =\frac{4}{27}\left( \left[ 2^{\frac{3+m}{3}} \right] + \left[ 2^{\frac{m}{3}} \right] \right)^3\\ =\frac{4}{27}\left(\left[ 2^{\frac{3+m}{3}} \right]^3 + 3*\left[ 2^{\frac{3+m}{3}} \right]^2 \left[ 2^{\frac{m}{3}} \right] + 3*\left[ 2^{\frac{3+m}{3}} \right] \left[ 2^{\frac{m}{3}} \right] ^2 + \left[ 2^{\frac{m}{3}} \right] ^3 \right)\\ =\frac{4}{27}\left(\left[ 2^{3+m} \right] + 3*\left[ 2^{\frac{6+2m}{3}} \right] \left[ 2^{\frac{m}{3}} \right] + 3*\left[ 2^{\frac{3+m}{3}} \right] \left[ 2^{\frac{2m}{3}} \right] + \left[ 2^{m} \right] \right)\\ =\frac{4}{27}\left(\left[ 2^{3+m} \right] + 3*\left[ 2^{\frac{6+3m}{3}} \right] + 3*\left[ 2^{\frac{3+3m}{3}} \right] + \left[ 2^{m} \right] \right)\\ =\frac{4}{27}\left(\left[ 2^{3+m} \right] + 3*\left[ 2^{2+m} \right] + 3*\left[ 2^{1+m} \right] + \left[ 2^{m} \right] \right)\\ =\frac{4*2^m}{27}\left(\left[ 2^{3} \right] + 3*\left[ 2^{2} \right] + 3*\left[ 2 \right] + \left[ 1 \right] \right)\\ =\frac{4*2^m}{27}\left(8+ 12 + 6 + 1\right)\\ =\frac{4*2^m}{27}\left(27\right)\\ =2^{(m+2)} \)
LaTex
\frac{4}{27}\left(2^{\frac{3+m}{3}}+2^{\frac{m}{3}}\right)^3\\
=\frac{4}{27}\left( \left[ 2^{\frac{3+m}{3}} \right] + \left[ 2^{\frac{m}{3}} \right] \right)^3\\
=\frac{4}{27}\left(\left[ 2^{\frac{3+m}{3}} \right]^3
+ 3*\left[ 2^{\frac{3+m}{3}} \right]^2 \left[ 2^{\frac{m}{3}} \right]
+ 3*\left[ 2^{\frac{3+m}{3}} \right] \left[ 2^{\frac{m}{3}} \right] ^2 + \left[ 2^{\frac{m}{3}} \right] ^3 \right)\\
=\frac{4}{27}\left(\left[ 2^{3+m} \right]
+ 3*\left[ 2^{\frac{6+2m}{3}} \right] \left[ 2^{\frac{m}{3}} \right]
+ 3*\left[ 2^{\frac{3+m}{3}} \right] \left[ 2^{\frac{2m}{3}} \right] + \left[ 2^{m} \right] \right)\\
=\frac{4}{27}\left(\left[ 2^{3+m} \right]
+ 3*\left[ 2^{\frac{6+3m}{3}} \right]
+ 3*\left[ 2^{\frac{3+3m}{3}} \right] + \left[ 2^{m} \right] \right)\\
=\frac{4}{27}\left(\left[ 2^{3+m} \right]
+ 3*\left[ 2^{2+m} \right]
+ 3*\left[ 2^{1+m} \right] + \left[ 2^{m} \right] \right)\\
=\frac{4*2^m}{27}\left(\left[ 2^{3} \right]
+ 3*\left[ 2^{2} \right]
+ 3*\left[ 2 \right] + \left[ 1 \right] \right)\\
=\frac{4*2^m}{27}\left(8+ 12 + 6 + 1\right)\\
=\frac{4*2^m}{27}\left(27\right)\\
=2^{(m+2)}