Five positive integers are arranged in a circle, with residues 0, 1, or 2 modulo 3. No two adjacent numbers (a_i + a_(i+1)) or three adjacent numbers (a_i + a_(i+1) + a_(i+2)) have a sum divisible by 3, indices modulo 5. We need the number of a_i ≡ 0 (mod 3), with options 0, 1, 2, or 3.
Exactly 2 numbers are divisible by 3. The sequence 0, 1, 0, 1, 1:
Two adjacent: 0+1=1, 1+0=1, 0+1=1, 1+1=2, 1+0=1. All ≢ 0 (mod 3).
Three adjacent: 0+1+0=1, 1+0+1=2, 0+1+1=2, 1+1+0=2, 1+0+1=2. All ≢ 0 (mod 3).
Other cases fail:
Zero 0’s: E.g., 1, 1, 1, 1, 1: 1+1+1=3 ≡ 0. Or 1, 2, 1, 2, 1: 1+2=3 ≡ 0.
One 0: E.g., 0, 1, 1, 1, 1: 1+1+1=3 ≡ 0.
Three 0’s: E.g., 0, 1, 0, 1, 0: 0+0=0 (mod 3).
Thus, 2 is the only solution.
Answer: (C) 2