First, let's make some observations. 
 Note that all points that are 5 units away from the point (2, 7) froms a circle with radius 5 and center (2, 7). 
 The equation for that circle would be \((x-2)^2+(y-7)^2=25\)
  
 Combining this with the second equation, we get a system. 
 \((x-2)^2+(y-7)^2=25\\ y=5x-28\)
  
 We already have a y value in terms of x, so we plug that into the first equation. 
 We get
 \((x-2)^2+(5x-35)^2=25\\ x^2-4x+4+25x^2-350x+1225=25\\ 13x^{2}-177x+602=0\)
  
 Now, we can solve for x. Using the quadratic equation, we get
 \(x=\frac{-{(-177})\pm \sqrt{{(-177)}^{2}-4\cdot {13}\cdot{602}}}{2\cdot {13}}\)
 \(x=\frac{177\pm 5}{26}\)
 \(x=7\\ x=\frac{86}{13}\)
  
 Plugging these values for y, we get 
 \(\begin{pmatrix}x=7,\:&y=7\\ x=\frac{86}{13},\:&y=\frac{66}{13}\end{pmatrix}\)
  
 So our final answer is (7, 7) and (86/13, 66/13)
  
 Thanks! :)