регистр
Авторизоваться
Имя пользователя
пароль
Авторизоваться
Забыли пароль?
Главная
Форум
+0
формула
математика
Помогите
Комплексные числа
дифференциальное исчисление
дифференциальное исчисление
Уравнения
Функция Графики
Линейная алгебра
Теория чисел
Проценты
стандартные функции
вероятность
Тригонометрия
Преобразование единиц
Единицы
Около
выходные данные
политика конфиденциальности
Условия использования
кредиты
Google+
Facebook
Почта для связи
onyuIee
Имя пользователя
onyuIee
Гол
616
Membership
Stats
Вопросов
147
ответы
11
147 Questions
11 Answers
0
23
2
+616
Geometry
The incircle of triangle ABC is shown. Find x, in degrees.
●
●
onyuIee
17 дек. 2025 г.
0
1
1
+616
Geometry
Find the area of triangle ABC if AH=6, AQ=4, and CQ=11 in the diagram below.
●
onyuIee
17 дек. 2025 г.
0
24
0
+616
Counting
A standard deck of 52 cards has 13 ranks (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King) and 4 suits (spades, hearts, diamonds, and clubs), such that there is exactly one card for any given rank and suit.
You are dealt a hand of
прочитайте больше ..
onyuIee
9 мая 2025 г.
0
19
0
+616
Counting
Find the number of sequences (a_1, a_2, a_3, \dots, a_8) such that:
* a_i \in \{1, 2, 3, 4, 5, 6, 7, 8\} for all 1 \le i \le 8.
* Every number1, 2, 3, 4, 5, 6, 7, 8 appears at least once in the sequence.
onyuIee
9 мая 2025 г.
0
13
0
+616
Counting
A permutation of the numbers (1,2,3,\dots,n) is a rearrangement of the numbers in which each number appears exactly once. For example, (2,5,1,4,3) is a permutation of (1,2,3,4,5).
Find the number of permutations (x_1, x_2, \dots, x_8)
прочитайте больше ..
onyuIee
9 мая 2025 г.
0
16
0
+616
Counting
Adam the ant starts at (0,0). Each minute, he flips a fair coin. If he flips heads, he moves 1 unit up; if he flips tails, he moves 1 unit right.
Betty the beetle starts at (1,1). Each minute, she flips a fair coin. If she flips heads,
прочитайте больше ..
onyuIee
19 апр. 2025 г.
0
15
1
+616
Counting
Consider the sequence
1, 5, 6, 25, 26, 30, 31, ...
which consists of every positive integer that can be expressed as a sum of distinct powers of 5.
What is the first term that is greater than 50?
●
onyuIee
19 апр. 2025 г.
0
13
0
+616
Counting
Consider the sequence
1, 3, 4, 9, 10, 12, 13, ...
which consists of every positive integer that can be expressed as a sum of distinct powers of 3.
What is the first term that is greater than 20?
onyuIee
19 апр. 2025 г.
+1
9
1
+616
Counting
Let P be a point chosen uniformly at random inside ABC. Extend ray BP to hit side AC at D. What is the probability that BD < 4?
The sides of triangle ABC are 3, 5, and 7.
●
onyuIee
10 апр. 2025 г.
0
27
0
+616
Counting
Given a regular octagon, in how many ways can we color one diagonal red and another diagonal blue so that the two colored diagonals intersect at an endpoint? Consider rotations and reflections distinct.
onyuIee
10 апр. 2025 г.
0
17
0
+616
Counting
Find the number of ways of placing three As, three Bs, and three Cs in a 3 \times 3 grid, so that every square contains one letter, and each diagonals contains one A, one B, and one C.
onyuIee
10 апр. 2025 г.
0
37
0
+616
Algebra
Suppose the domain of f is (-1,3). Define the function g by
g(x) = f(x - 4x^2)
What is the domain of g?
onyuIee
22 февр. 2025 г.
0
27
0
+616
Algebra
Suppose the domain of f is (-1,3). Define the function g by
g(x) = 5 - f(x) + f(5/x).
What is the domain of g?
onyuIee
22 февр. 2025 г.
0
34
0
+616
Algebra
Suppose the domain of f is (-1,3). Define the function g by
g(x) = f(2/x + x/2).
What is the domain of g?
onyuIee
22 февр. 2025 г.
0
29
0
+616
Algebra
Suppose the domain of f is (-1,3). Define the function g by
g(x) = f((x + 1)(x - 2)).
What is the domain of g?
onyuIee
22 февр. 2025 г.
0
39
1
+616
Geometry
What are the coordinates of the points where the graphs of f(x)=x^3 + x^2 - 3x + 5 and g(x) = x^3 + 2x^2 intersect?
Give your answer as a list of points separated by commas, with the points ordered such that their -coordinates
прочитайте больше ..
●
onyuIee
23 янв. 2025 г.
0
35
1
+616
Geometry
In triangle $ABC,$ $AB = 3,$ $AC = 5,$ $BC = 7,$ and $D$ lies on $\overline{BC}$ such that $\overline{AD}$ bisects $\angle BAC.$ Find $\cos \angle BAD.$
●
onyuIee
23 янв. 2025 г.
«
последний
13
12
..
2
1
»
#1
+616
0
The number of ways is 14.
onyuIee
9 мая 2025 г.
«
последний
0
-1
2
последний
»