1) Defining cosh z as 12(ez+e−z), express in the form a + bi
(a) cosh(5i)
(b) cosh(2+5i)
2) Express in the form a + bi:
ln(3+4i)
3) Evaluate ∫π/20sin6xcosxdx
4) Find ∫a0(a2−x2)5/2dx and ∫a0x2(a2−x2)5/2dx
5)Find et∫t0xnn!e−xdx
The first 2 questions about complex number, I still have some clue for solving it, I only know that I should use Euler's relation eiθ=cosθ+isinθ, but the last 3 question about integrals...... *sigh* totally no clue in solving those :(
Also can anyone tell me that for a complex number z, what is arg(z) and |z|?
Here are a couple of hints:
3) What is d(sin7x)/dx ?
4) (a2 - x2)5/2 → a5(1 - (x/a)2)5/2 Let sin y = x/a
arg(z) and |z| are the same thing, namely the absolute value of the complex number. If
z = a + ib then arg(z) = |z| = sqrt(a2 + b2)
1) Defining cosh z as , express in the form a + bi
(a) cosh(5i)
(b) cosh(2+5i)
Formula:
cosh(a+i⋅b)=cosh(a)cos(b)+i⋅sinh(a)sin(b)
(a)
cosh(5i)a=0b=5cosh(5i)=cosh(0)⏟=1cos(5⋅rad)+i⋅sinh(0)⏟=0sin(5⋅rad)cosh(5i)=cos(5⋅rad)cosh(5i)=0.28366218546…
(b)
cosh(2+5i)a=2b=5cosh(2+5i)=cosh(2)cos(5⋅rad)+i⋅sinh(2)sin(5⋅rad)cosh(2+5i)=3.76219569108363145956… ⋅0.28366218546…+i⋅3.626860407847018767668…(−0.95892427466)cosh(2+5i)=1.067192651873… −i⋅3.477884485899…
2) Express in the form a + bi:
ln(3+4i)
Formula:
ln(a+i⋅b)=ln(√a2+b2)+i⋅arctan(yx)
ln(3+4i)a=3b=4ln(3+4i)=ln(√32+42)+i⋅arctan(yx)ln(3+4i)=ln(5)+i⋅0.92729521800…ln(3+4i)=1.609437912434100⋯+i⋅0.92729521800161…