Processing math: 100%
 
+0  
 
+5
1040
9
avatar+9675 

1) Defining cosh z as 12(ez+ez), express in the form a + bi

(a) cosh(5i)

(b) cosh(2+5i)

 

2) Express in the form a + bi:

 ln(3+4i)

 

3) Evaluate π/20sin6xcosxdx

4) Find a0(a2x2)5/2dx and a0x2(a2x2)5/2dx

 

5)Find  ett0xnn!exdx

 

The first 2 questions about complex number, I still have some clue for solving it, I only know that I should use Euler's relation eiθ=cosθ+isinθ, but the last 3 question about integrals...... *sigh* totally no clue in solving those :(

 

Also can anyone tell me that for a complex number z, what is arg(z) and |z|?

 Nov 28, 2016
edited by MaxWong  Nov 28, 2016

Best Answer 

 #9
avatar+118703 
+19

Hi GerardWay

Yes, Heureka and Alan are VERY impressive !!     wink  laugh  cool

 Nov 29, 2016
 #1
avatar+33654 
+10

Here are a couple of hints:

 

3) What is d(sin7x)/dx ?

 

4) (a2 - x2)5/2 → a5(1 - (x/a)2)5/2 Let sin y = x/a

 

arg(z) and |z| are the same thing, namely the absolute value of the complex number. If 

z = a + ib then arg(z) = |z| = sqrt(a2 + b2)

 Nov 28, 2016
 #2
avatar+33654 
+10

Correction!  arg(z) is the angle formed by tan-1(b/a)

 

i.e. tan-1(imaginary component/real component)

 

.

Alan  Nov 28, 2016
 #3
avatar+33654 
+10

|z| is the magnitude, as in my original reply.

Alan  Nov 28, 2016
 #4
avatar+26396 
+5

1) Defining cosh z as , express in the form a + bi

(a) cosh(5i)

(b) cosh(2+5i)

 

Formula:

cosh(a+ib)=cosh(a)cos(b)+isinh(a)sin(b)

 

(a)

cosh(5i)a=0b=5cosh(5i)=cosh(0)=1cos(5rad)+isinh(0)=0sin(5rad)cosh(5i)=cos(5rad)cosh(5i)=0.28366218546

 

(b)

cosh(2+5i)a=2b=5cosh(2+5i)=cosh(2)cos(5rad)+isinh(2)sin(5rad)cosh(2+5i)=3.76219569108363145956 0.28366218546+i3.626860407847018767668(0.95892427466)cosh(2+5i)=1.067192651873 i3.477884485899

 

 

laugh

 Nov 28, 2016
 #5
avatar+26396 
+5

2) Express in the form a + bi:
ln(3+4i)

 

Formula:

ln(a+ib)=ln(a2+b2)+iarctan(yx)

 

ln(3+4i)a=3b=4ln(3+4i)=ln(32+42)+iarctan(yx)ln(3+4i)=ln(5)+i0.92729521800ln(3+4i)=1.609437912434100+i0.92729521800161

 

 

 

laugh

 Nov 28, 2016
 #8
avatar+26396 
+10

Sorry, without mistakes:

 

2) Express in the form a + bi:

ln(3+4i)

 

Formula:

ln(a+ib)=ln(a2+b2)+iarctan(ba)

 

ln(3+4i)a=3b=4ln(3+4i)=ln(32+42)+iarctan(43)ln(3+4i)=ln(5)+i0.92729521800ln(3+4i)=1.609437912434100+i0.92729521800161

 

blushlaugh

heureka  Nov 29, 2016
 #6
avatar+7 
+15

surpriseWOW HOW DO YOU EVEN DO THAT

 Nov 28, 2016
 #9
avatar+118703 
+19
Best Answer

Hi GerardWay

Yes, Heureka and Alan are VERY impressive !!     wink  laugh  cool

Melody  Nov 29, 2016
 #7
avatar+33654 
+15

Here's a way of doing the first part of 4):

 

The second integral can be done in similar fashion (though there are higher powers to deal with).  You should find the result is 5π256a8

.

 Nov 29, 2016

1 Online Users