What is the probability that BD < 4?
\(\color{blue}P=\dfrac{A_{DBC}}{A_{ABD}}\)
\(f_{AC}(x)=\sqrt{5^2-x^2}\\ f_{BC}(x)=\sqrt{3^2-(x-7)^2}\\ 25-x^2=9-x^2+14x-49\\ 14x=65\\ x_C=4.6429 \\ y_C=1.8558\\ C(4.6429,1.8558)\\ A(0,0)\\ B(7.0)\)
\(f_{AD}=\frac{1.8558}{4.6429}x\\ f_{BD}=\sqrt{4^2-(x-7)^2}\\ \frac{1.8558}{4.6429}x=4^2-(x-7)^2\\ \frac{1.8558}{4.6429}x=16-x^2+14x-49 \)
\(x^2-13.6003x+33=0\\ x=6.8001\pm \sqrt{46.2420-33}\\ x_D=3.1661\\ y_D=1.2635\\ D(3.1661,1.2635)\)
\(A_{ABC}=\frac{7}{2}\cdot 1.8558\\ A_{ABC}=6.4953\\ A_{ABD}=\frac{7}{2}\cdot 1.2635\\ \color{blue}A_{ABD}=4.4224\\ A_{DBC}=A_{ABC}-A_{ABD}=6.4953-4.4224\\ \color{blue}A_{DBC}=2,0729\)
\(P=\dfrac{A_{DBC}}{A_{ABD}}=\frac{2.0729}{4.4224}:\frac{2.0729}{2.0729}=1:2.1334\)
The probability that BD < 4 is \(\color{blue }P=1:2.1334\)
!