Note that, by AAS, triangle EC1D is congruent to triangle EAB
C1 D = AB = DC = 5
BC1 = BC = 10
And BD = √[C1D^2 + BC1^2] = √ [5^2 + 10^2 ] = √125
Note that BE^2 = AE^2 + AB^2 = AE^2 + 25
And BE = √[AE^2 + 25 ]
By the Law of Cosines, we have
AB^2 = AE^2 + BE^2 - 2 (AE * BE) cosAEB
5^2 = AE^2 + (AE^2 + 25) - 2(AE√[AE^2 + 25] )cos (AEB)
25 = AE^2 + AE^2 + 25 - 2 (AE √[AE^2 + 25] )cos(AEB)
[-2AE^2] / [ -2AE√[AE^2 + 25] = cos(AEB)
AE/ √[AE^2 + 25] = cos(AEB) (1)
Note that AEB and DEB are supplemental....so cos(DEB) = -cos(AEB)
So....using the Law of Cosines again, we have
BD^2 = BE^2 + BE^2 - 2(BE^2)(-cos(AEB))
125 = 2BE^2 + 2BE^2(cos(AEB) )
125 = 2[AE^2 + 25] - 2[AE^2 + 25] os(AEB)
125 = 2AE^2 + 50 - 2[AE^2 + 25] cos(AEB)
[75 - 2AE^2[ / [ 2(AE^2 + 25) ] = cos(AEB) (2)
Equate (1) and (2)
[75 - 2AE^2 ] / [ 2(AE^2 + 25)] = AE/ √[AE^2 + 25]
[75 - 2AE^2] /(AE^2 + 25) = 2AE/ √[AE^2 + 25]
[75- 2AE^2] / (AE^2 + 25) = 2AE√[AE^2 + 25] / (AE^2 + 25)
75 - 2AE^2 = 2AE√[AE^2 + 25] square both sides
5625 - 300AE^2 + 4AE^4 = 4AE^2 [ AE^2 + 25] simplify
5625 - 300AE^2 + 4AE^4 = 4AE^4 + 100AE^2
5625 = 400AE^2
5626/400 = AE^2
225/16 = AE^2
15/4 = AE
So
DE = AD - AE
DE = 10 - 15/4
DE = 40/4 - 15/4
DE = 25/4 = 6.25