r^2 + s^2 = 1
r^4 + s^4 = 7/8
s^2 = 1 - r^2
s^4 = (1-r^2)^2 = r^4 - 2r^2 + 1
So
r^4 + s^4 = 1
r^4 + r^4 - 2r^2 + 1 = 7/8
2r^4 - 2r^2 + 1/8 = 0 divide through by 2
r^4 - r^2 + 1/16 = 0
r^4 - r^2 = - 1/16 complete the square on r
r^4 - r^2 +1/4 = -1/16 + 1/4
(r^2 -1/2)^2 = 3/16 take the positive root of both sides
r^2 - 1/2 = √3/4
r^2 = √3/4 + 1/2
r^2 = [ 2 + √3] / 4 take the positive root
r =√[ 2 + √3 ] / 2
So.....
s^2 = 1 - r^2
s^2 = 1 - [ 2 + √3] / 4
s^2 = [ 4 - 2 - √3] / 4
s^2 = [ 2 - √3 ] / 4
s = √[ 2 - √3 ] / 2
So rs = √[ 2 + √3 ] / 2 * √[ 2 - √3 ] / 2 = √ [ (2 + √3) (2 - √3) ] / 4 = √ [ 4 - 3] / 4 = 1/4