CPhill

avatar
Имя пользователяCPhill
Гол129850
Membership
Stats
Вопросов 56
ответы 43161

 #3
avatar+129850 
0
7 мая 2018 г.
 #1
avatar+129850 
+1

1.   16(x - 3)  =  (y - 1)^2 

 

The vertex of this parabola is at  ( 3, 1)

This parabola opens to the right

In the form    4p(x - 3)  = (y - k)^2......the focus is  ( 3 + p, 1)   

We can solve for p as  4p  =16  ⇒   p  = 4

So....the focus  is  ( 3 + 4, 1)   =  (7,1)

The dirctrix lies 4 units to the left of the vertex and is given by    x  = ( 3 - p )  =   (3  - 4 )   =    -1

Here's a graph :  https://www.desmos.com/calculator/iwubncnnan

 

2.  y  = -1/6 x^2 + 7x  - 80     we need to complete the square on  x

 

y  = (-1/6)  [ x^2- 42x + 480 ]     

 

Take 1/2 of 42  = 21....square it  = 441....add and subtract it within the brackets

 

y   =    (-1/6)  [x^2 - 42x + 441 + 480  - 441 ]     factor the frist three terms....simplify the rest

 

y  = (-1/6) [  (x - 21)^2  + 39 ]

 

y = (-1/6)(x - 21)^2  - 39/6

 

y  = (-1/6)(x - 21)^2  - 13/2       add 13/2 to both sides

 

(y + 13/2) =  (-1/6)(x - 21)^2        multiply through  by -6

 

-6(y + 13/2)  = (x - 21)^2

 

Because of the presence of a "-"   in front of the "6"......this parabola turns downward

The vertex is  ( 21, - 13/2)

The focus is  given by ( 21 , -13/2  + p )

And we can find  p as    .....  4p  = -6   ⇒  p  = -6/4  = -3/2

So....the  focus  is  (21, -13/2 - 3/2)   = ( 21 , -16/2)  = (21, -8)

The directerix is given as    y  = (-13/2 - p)   = ( -13/2 - (-3/2) )   = ( -13/2 + 3/2)  = -10/2  = -5

Here's a graph :  https://www.desmos.com/calculator/g9zfw92yos

 

 

cool cool cool

5 мая 2018 г.
 #1
avatar+129850 
+1

1.  y  = -1/4x^2 + 4x  - 19

 

The x coordinate of the vertex  is given by   -4 / (2 * -1/4)  =  -4 / (-1/2)  =   -4 * -2    =  8

And the y coordinate is given  by :

-1/4 (8)^2  + 4(8)  - 19  =

-16  + 32   - 19

-3

 

So....the vertex  is  (8, -3)

 

Here's a graph : https://www.desmos.com/calculator/z76eahtb61

 

2. The center of the circle  is  ( 1, 4)   and the radius  is 8

 

So we have

 

(x - 1) ^2   + ( y - 4)^2   = 8^2        expand and simplify

 

x^2 - 2x + 1  + y^2  - 8y + 16  = 64

 

x^2 + y^2  - 2x - 8y  + 17  = 64       subtract 64 from both sides

 

x^2  + y^2  -2x - 8y - 47   =  0 

 

 

 

3.  We have    y   =  1/8 x^2 + 4x + 20

 

We want to complete the square  on x

 

y = (1/8)  (x^2  + 32x + 160)

 

Take  1/2 of 32  = 16....square it  = 256....add and subtract it within the parentheses

 

y  = (1/8)  (x^2 + 32x  + 256   + 160   - 256)       factor the first three terms, simplify the last two

 

y = (1/8) [ (x + 16)^2  - 96 ]       apply the  1/8   over both terms in the parentheses

 

y  = (1/8) (x + 16)^2 - 12

 

(y + 12)  = (1/8)(x + 16)^2     multiply both sides by 8

 

8( y + 12)  = (x + 16)^2

 

The vertex  is at  (-16, -12)

 

In the form

 

4p ( y - k)  = (x - h)^2

 

4p  = 8

 

So....p  = 2

 

And the focus is given by

 

(-16 ,  -12 + p)   =    (-16, -12 + 2)   =   (-16, -10)

 

Here's the graph  :  https://www.desmos.com/calculator/cgsvcjy0ny

 

 

 

cool cool cool

5 мая 2018 г.