9)The circles x^2 + y^2 = 4 and (x-2)^2 + (y-3)^2 = 7 intersect in two points A and B. Find the slope of AB.
Simplify the second equation
x^2 - 4x + 4 + y^2 - 6y + 9 = 7
x^2 -4x + y^2 - 6y = -6
Add both equations
x^2 - 4x + y^2 - 6y = - 6
x^2 + y^2 = 4
______________________
-4x - 6y = -10
Solve this for y
4x + 6y = 10
2x + 3y = 5
3y = 5 - 2x
y = [ 5 - 2x ] / 3 sub this into x^2 + y^2 = 4 for y
x^2 + ( [ 5 -2x ] / 3 )^2 = 4
x^2 + [ 4x^2 - 20x + 25 ] / 9 = 4
9x^2 + 4x^2 - 20x + 25 = 36
13x^2 - 20x - 11 = 0
Solving this equation for x produces
x = [10 + 9√3 ] / 13 or x = [ 10 - 9√3] / 13
And when x = [ 10 - 9√3] / 13, then y = [15 + 6√3 ] / 13
And when x = [10 + 9√3] / 13, then y = [15 - 6√3] / 13
So....the points of intersection are
( [ 10 - 9√3 ] / 13, [15 + 6√3 ] / 13 ) and ( [ 10 + 9√3 ] / 13, [15 - 6√3 ] / 13 )
And the slope between these points is
[ ( 15 + 6√3) - ( 15 - 6√3) ] / [ (10 - 9√3) - (10 + 9√3) ] =
[12√3 ] / [ (-18√3] =
-2/3