CPhill

avatar
Имя пользователяCPhill
Гол129845
Membership
Stats
Вопросов 56
ответы 43161

 #4
avatar+129845 
+2

x^2 / 9  +  y^2 /25  = 1    can be transformed to  25x^2 + 9y^2  = 225    (1)

y  = 4x + k    (2)

The slope of a tangent line at any point on (1)  can be found as

50x + 18y y'  = 0

y'  =  -50x / [ 18y]   =  -25x / [ 9y]

And we are looking for  where the slope of a tangent line  = 4

So

-25x / 9y  = 4

-25x = 36y

y = (-25)/(36) x       sub this into  (1) for y

25x^2  + 9 (-25/36 x)^2 =  225

25x^2  + 9 (625/1296)x^2  = 225

4225/144 x^2  = 225 

x^2  =225 * 144 / 4225     take both roots

x = 15 * 12 / 65  = 180/65  =36/13

Or

x = -36/13

Subbing either value into  (1) to find  y we have

25 (36/13)^2  + 9y^2  = 225

32400 / 169  + 9y^2  = 225

32400 / 169 + 9y^2  = 38025/169

y^2  = [38025 - 32400 ] / [ 9 * 169]

y^2 = [5625] / [ 9 * 169]      take both roots

y = 75 / [ 3 * 13 ] =  75 / 39  = 25 / 13

OR

y = -25/13

 

So....the slope of the tangent line to the ellipse = 4  at   (-36/13 , 25/13)  and (36/13. -25/13)

 

Writing an equation of one tangent line using the first point we have

 

y  = 4 ( x + 36/13)  + 25/13

y = 4x + 144/13 + 25/13

y = 4x   + 169/13

y = 4x + 13

 

And writing the equation of the other tangent line we have that

y = 4 (x - 36/13) - 25/13

y = 4x - 144/13  - 25/13

y = 4x -169/13

y = 4x - 13

 

Note the graph here :  https://www.desmos.com/calculator/syelncmges

When k  = 0 .....the graph intersects the ellipse at two points

However when k < -13  ...the tangent line is shifted to the right of the ellipse

And when k > 13....the tangent line is shifted to the left of the ellipse

 

cool cool cool

13 окт. 2018 г.
 #3
avatar+129845 
0
13 окт. 2018 г.