I assume this is
3x / [ 2x^2 - 18 ] if so, we can wrtite this as
(3x) ( 2x^2 - 18)^(-1)
First derivative
3 ( 2x^2 - 18)^(-1) - 3x (2x^2 - 18)^(-2) (4x) =
3( 2x^2 - 18 )^(-1) - 12x^2 (2x^2 - 18)^(-2) =
3 ( 2x^2 - 18)^(-2) [ (2x^2 - 18 - 4x^2 ] =
3 (2x^2 - 18)^(-2) [ -2x^2 - 18 ] =
3 ( 2x^2 - 18)^(-2) [ -2 (x^2 + 9 ] =
-6 (x^2 + 9) (2x^2 - 18)^(-2)
Second derivative
- 6 [ 2x (2x^2 - 18)^(-2) - 2 (x^2 + 9) (2x^2 - 18)^(-3) (4x) ] =
-6 [ 2x (2x^2 - 18)^(-2) - 8x (x^2 + 9) (2x^2 - 18)^(-3) ] =
-6 [ 2x (2x^2 - 18)^(-3) ] [ (2x^2 - 18) - 4( x^2 + 9) ] =
-6 [ 2x (2x^2 - 18)^(-3) ] [ 2x^2 - 18 - 4x^2 - 36 ] =
-6 [ 2x (2x^2 - 18)^(-3) [ -2x^2 - 54 ] =
6 [ 2x (2x^2 - 18)^(-3) (2)(x^2 + 27) ] =
12 [ 2x (2x^2 - 18 )^(-3) (x^2 + 27) =
24x (x^2 + 27) / [ (2^3 (x^2 - 9)^(-3) ] =
24x (x^2 + 27) / [ 8 ( x^2 - 9)^(-3) ] \
3x (x^2 + 27) (x^2 - 9 )^(-3)
