3^(2c + 1) = 28 *3^c + 4*3^c -25 - 9
3* 3^(2c) = 32*3^c - 34
3* (3^c)^2 - 32*3^c + 34 = 0 let 3^c = x so that (3^c)^2 = x^2
So we have
3x^2 - 32x + 34 = 0
Using the Quadratic Formula
x = [ 32 + sqrt [ 32^2 - 4 * 3 *34] ] / 6 = [ 32 + sqrt (616) ] / 6 =
[32 +2sqrt (154) ] / 6 = [16 + sqrt (154) ] / 3
And x = the conjugate = [ 16 -sqrt (154) ] / 3
So
3^c = [ 16 - sqrt (154) ] / 3 take the log of both sides
log 3^c = log ( [16 - sqrt (154)] / 3)
c log 3 = log ( [ 16 - sqrt (154)]/3)
c = log ( [16 -sqrt (154)]/3) / log 3 ≈ .163 and
c = log ([16 + sqrt (154) ] / 3) / log 3 ≈ 2.046