geno3141

avatar
Имя пользователяgeno3141
Гол23252
Membership
Stats
Вопросов 1
ответы 7089

 #3
avatar+23252 
0

1)  EF || GH   --->   arc(EH) = arc(FG)   --->   x2 - 2x  =  56 - 3x

                                                                  x2 + x - 56  =  0

                                                               (x + 8)(x - 7)  =  0

                                                                                 x  =  7                      (can't be negative)

    I don't know how to use this value for x to find arc(EPF) because I don't know where P is.

 

2)  Because this is a regular dodecagon, each side is congruent to every other side.

     Since you haven't had any trig, try this:

     Within the regular dodecagon,

     --  Draw the regular hexagon  P1P3P5P7P9P11  (with the center of the circle = O)

          Since it is a regular hexagon, angle(P1OP3)  =  60o      

          OP1  =  OP3 =  P1P3  =  1

     --  Draw the diameter of the circle that goes through P2.

          This bisects angle(P1OP3) and also bisects P1P3  --  call this point X.

    --  P1X · XP3  =  P2X · XP8        (P8 is the other end of the diameter from P2)

         P1X  =  XP3  =  1/2

         Let P2X  =  x   --->   XP8  =  2 - x

 

         P1X · XP3  =  P2X · XP8   --->   (1/2)(1/2)  =  (x)(2 - x)

                                                                     1/4  =  2x - x2

                                                        x2 - 2x - 1/4  =  0

 

          By the quadratic formula:  x  =  ( 2 - sqrt(3) ) / 2

 

       Now, look at triangle P1XP2  --  it is a right triangle with P1P2 the hypotenuse

       Using the Pythagorean Theorem:  (P1P2)2  =  (1/2)2 + ( 2 - sqrt(3) )2   

                    --->   P1P2  =  2 - sqrt(3)

 

To find your answer, you'll need to square this and multiply by 12.

15 июн. 2020 г.