y = -2x2 + bx + c with roots 3 + sqrt(5) and 3 - sqrt(5)
One answer is: y = [ x - ( 3 + sqrt(5) ) ] · [ x - ( 3 - sqrt(5) ) ]
Let's multiply out the right-hand side:
[ x - ( 3 + sqrt(5) ) ] · [ x - ( 3 - sqrt(5) ) ] ---> [ x - 3 - sqrt(5) ] · [ x - 3 + sqrt(5) ]
---> x2 - 3x + sqrt(5)·x - 3x + 9 - 3·sqrt(5) - sqrt(5)·x + 3·sqrt(5) - 5
---> x2 - 6x + 4
However, since the original problem started with "-2x2", we'll have to multiply this answer by -2:
---> y = -2x2 + 12x - 8
To find the vertex: y = -2x2 + 12x - 8
---> add 8 to both sides: y + 8 = -2x2 + 12x
---> factor out the -2: y + 8 = -2(x2 - 6x)
---> complete the square: y + 8 - 18 = -2(x2 - 6x + 9)
y - 10 = -2(x - 3)2
The vertex is (3, 10)