In how many ways can you write 20 as a sum of three counting numbers?
  
 One Way: 1+18+1
 Not a Way: 1+1+1+17
  
 Anybody now how to solve this?
  
 I assume in your case, there is only a recursive method:
 Let P(n,k) is the number of partitions of a positive integer n into exactly k parts:
 For instance, \(7 = 5+1+1=4+2+1=3+2+2\), so \(p(7,3) = 4\)
  
 Formula:
 \(\begin{array}{|rcll|} \hline P(0,0) &=& 1 \\ P(n,0) &=& 0 \qquad n\ge 1 \\ P(n,1 )&=& 1 \\ P(n,n) &=& 1 \\ P(n,k) &=& P(n-k,k)+P(n-1,k-1) \qquad \text{ or } \qquad P(n+k,k) = \sum \limits_{j=1}^{k}P(n,j) \\ \hline \end{array} \)
  
 In how many ways can you write 20 as a sum of three counting numbers?
 p(20,3) = 33
  
 P(n,k):
 
  
 p(n,k):
  
 n = 1 -------------------------
 p(1,1) = 1
  
 n = 2 -------------------------
 p(2,1) = 1
 p(2,2) = 1
  
 n = 3 -------------------------
 p(3,1) = 1
 p(3,2) = 1
 p(3,3) = 1
  
 n = 4 -------------------------
 p(4,1) = 1
 p(4,2) = 2
 p(4,3) = 1
 p(4,4) = 1
  
 n = 5 -------------------------
 p(5,1) = 1
 p(5,2) = 2
 p(5,3) = 2
 p(5,4) = 1
 p(5,5) = 1
  
 n = 6 -------------------------
 p(6,1) = 1
 p(6,2) = 3
 p(6,3) = 3
 p(6,4) = 2
 p(6,5) = 1
 p(6,6) = 1
  
 n = 7 -------------------------
 p(7,1) = 1
 p(7,2) = 3
 p(7,3) = 4
 p(7,4) = 3
 p(7,5) = 2
 p(7,6) = 1
 p(7,7) = 1
  
 n = 8 -------------------------
 p(8,1) = 1
 p(8,2) = 4
 p(8,3) = 5
 p(8,4) = 5
 p(8,5) = 3
 p(8,6) = 2
 p(8,7) = 1
 p(8,8) = 1
  
 n = 9 -------------------------
 p(9,1) = 1
 p(9,2) = 4
 p(9,3) = 7
 p(9,4) = 6
 p(9,5) = 5
 p(9,6) = 3
 p(9,7) = 2
 p(9,8) = 1
 p(9,9) = 1
  
 n = 10 -------------------------
 p(10,1) = 1
 p(10,2) = 5
 p(10,3) = 8
 p(10,4) = 9
 p(10,5) = 7
 p(10,6) = 5
 p(10,7) = 3
 p(10,8) = 2
 p(10,9) = 1
 p(10,10) = 1
  
 n = 11 -------------------------
 p(11,1) = 1
 p(11,2) = 5
 p(11,3) = 10
 p(11,4) = 11
 p(11,5) = 10
 p(11,6) = 7
 p(11,7) = 5
 p(11,8) = 3
 p(11,9) = 2
 p(11,10) = 1
 p(11,11) = 1
  
 n = 12 -------------------------
 p(12,1) = 1
 p(12,2) = 6
 p(12,3) = 12
 p(12,4) = 15
 p(12,5) = 13
 p(12,6) = 11
 p(12,7) = 7
 p(12,8) = 5
 p(12,9) = 3
 p(12,10) = 2
 p(12,11) = 1
 p(12,12) = 1
  
 n = 13 -------------------------
 p(13,1) = 1
 p(13,2) = 6
 p(13,3) = 14
 p(13,4) = 18
 p(13,5) = 18
 p(13,6) = 14
 p(13,7) = 11
 p(13,8) = 7
 p(13,9) = 5
 p(13,10) = 3
 p(13,11) = 2
 p(13,12) = 1
 p(13,13) = 1
  
 n = 14 -------------------------
 p(14,1) = 1
 p(14,2) = 7
 p(14,3) = 16
 p(14,4) = 23
 p(14,5) = 23
 p(14,6) = 20
 p(14,7) = 15
 p(14,8) = 11
 p(14,9) = 7
 p(14,10) = 5
 p(14,11) = 3
 p(14,12) = 2
 p(14,13) = 1
 p(14,14) = 1
  
 n = 15 -------------------------
 p(15,1) = 1
 p(15,2) = 7
 p(15,3) = 19
 p(15,4) = 27
 p(15,5) = 30
 p(15,6) = 26
 p(15,7) = 21
 p(15,8) = 15
 p(15,9) = 11
 p(15,10) = 7
 p(15,11) = 5
 p(15,12) = 3
 p(15,13) = 2
 p(15,14) = 1
 p(15,15) = 1
  
 n = 16 -------------------------
 p(16,1) = 1
 p(16,2) = 8
 p(16,3) = 21
 p(16,4) = 34
 p(16,5) = 37
 p(16,6) = 35
 p(16,7) = 28
 p(16,8) = 22
 p(16,9) = 15
 p(16,10) = 11
 p(16,11) = 7
 p(16,12) = 5
 p(16,13) = 3
 p(16,14) = 2
 p(16,15) = 1
 p(16,16) = 1
  
 n = 17 -------------------------
 p(17,1) = 1
 p(17,2) = 8
 p(17,3) = 24
 p(17,4) = 39
 p(17,5) = 47
 p(17,6) = 44
 p(17,7) = 38
 p(17,8) = 29
 p(17,9) = 22
 p(17,10) = 15
 p(17,11) = 11
 p(17,12) = 7
 p(17,13) = 5
 p(17,14) = 3
 p(17,15) = 2
 p(17,16) = 1
 p(17,17) = 1
  
 n = 18 -------------------------
 p(18,1) = 1
 p(18,2) = 9
 p(18,3) = 27
 p(18,4) = 47
 p(18,5) = 57
 p(18,6) = 58
 p(18,7) = 49
 p(18,8) = 40
 p(18,9) = 30
 p(18,10) = 22
 p(18,11) = 15
 p(18,12) = 11
 p(18,13) = 7
 p(18,14) = 5
 p(18,15) = 3
 p(18,16) = 2
 p(18,17) = 1
 p(18,18) = 1
  
 n = 19 -------------------------
 p(19,1) = 1
 p(19,2) = 9
 p(19,3) = 30
 p(19,4) = 54
 p(19,5) = 70
 p(19,6) = 71
 p(19,7) = 65
 p(19,8) = 52
 p(19,9) = 41
 p(19,10) = 30
 p(19,11) = 22
 p(19,12) = 15
 p(19,13) = 11
 p(19,14) = 7
 p(19,15) = 5
 p(19,16) = 3
 p(19,17) = 2
 p(19,18) = 1
 p(19,19) = 1
  
 n = 20 -------------------------
 p(20,1) = 1
 p(20,2) = 10
 p(20,3) = 33
 p(20,4) = 64
 p(20,5) = 84
 p(20,6) = 90
 p(20,7) = 82
 p(20,8) = 70
 p(20,9) = 54
 p(20,10) = 42
 p(20,11) = 30
 p(20,12) = 22
 p(20,13) = 15
 p(20,14) = 11
 p(20,15) = 7
 p(20,16) = 5
 p(20,17) = 3
 p(20,18) = 2
 p(20,19) = 1
 p(20,20) = 1
 ...
  
 In how many ways can you write 20 as a sum of three counting numbers?
 p(20,3) = 33
 \(\begin{array}{|r|ll|} \hline & 20 = \\ \hline 1 & 1+1+18 \\ 2 & 1+2+17 \\ 3 & 1+3+16 \\ 4 & 1+4+15 \\ 5 & 1+5+14 \\ 6 & 1+6+13 \\ 7 & 1+7+12 \\ 8 & 1+8+11 \\ 9 & 1+9+10 \\ \hline 10 & 2+2+16 \\ 11 & 2+3+15 \\ 12 & 2+4+14 \\ 13 & 2+5+13 \\ 14 & 2+6+12 \\ 15 & 2+7+11 \\ 16 & 2+8+10 \\ 17 & 2+9+9 \\ \hline 18 & 3+3+14 \\ 19 & 3+4+13 \\ 20 & 3+5+12 \\ 21 & 3+6+11 \\ 22 & 3+7+10 \\ 23 & 3+8+9 \\ \hline 24 & 4+4+12 \\ 25 & 4+5+11 \\ 26 & 4+6+10 \\ 27 & 4+7+9 \\ 28 & 4+8+8 \\ \hline 29 & 5+5+10 \\ 30 & 5+6+9 \\ 31 & 5+7+8 \\ \hline 32 & 6+6+8 \\ 33 & 6+7+7 \\ \hline \end{array}\)
  
 