heureka

avatar
Имя пользователяheureka
Гол26367
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26367 
+3

Let \(x\), \(y\), and \(z\) be real numbers such that \(x^2 + y^2 + z^2 = 1\).

Find the maximum value of \(x + y + z\).

 

The Cauchy–Schwarz inequality states that for all vectors \( {\displaystyle u} \) and  \({\displaystyle v}\) of an inner product space it is true that
\({\displaystyle |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2}\leq \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle ,}\)

where \({\displaystyle \langle \cdot ,\cdot \rangle } \) is the inner product.

Source: https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

 

\(\text{Let $\vec{u} = \begin{pmatrix} x \\y\\z \end{pmatrix}$ } \\ \text{Let $\vec{v} = \begin{pmatrix} 1 \\1\\1 \end{pmatrix}$ } \)

 

\(\begin{array}{|rcll|} \hline \langle \mathbf {u} ,\mathbf {v} \rangle &=& \begin{pmatrix} x \\y\\z \end{pmatrix}\begin{pmatrix} 1 \\1\\1 \end{pmatrix} \\ &=& x+y+z \\\\ \langle \mathbf {u} ,\mathbf {u} \rangle &=& \begin{pmatrix} x \\y\\z \end{pmatrix}\begin{pmatrix} x \\y\\z \end{pmatrix} \\ &=& x^2+y^2+z^2 \\\\ \langle \mathbf {v} ,\mathbf {v} \rangle &=& \begin{pmatrix} 1 \\1\\1 \end{pmatrix}\begin{pmatrix} 1 \\1\\1 \end{pmatrix} \\ &=& 1^2+1^2+1^2 \\ &=& 3 \\\\ \hline |\langle \mathbf {u} ,\mathbf {v} \rangle |^{2} &\leq& \langle \mathbf {u} ,\mathbf {u} \rangle \cdot \langle \mathbf {v} ,\mathbf {v} \rangle \\ (x+y+z)^2 &\le& (x^2+y^2+z^2)\cdot 3 \\ x+y+z &\le& \sqrt{x^2+y^2+z^2}\cdot \sqrt{3} \quad | \quad x^2+y^2+z^2 = 1 \\ x+y+z &\le& 1\cdot \sqrt{3} \\ \mathbf{ x+y+z } & \mathbf{\le} & \mathbf{\sqrt{3}} \\ \hline \end{array}\)

 

The maximum value of \(x + y + z\) is \(\mathbf{\sqrt{3}}\)

 

laugh

12 июл. 2019 г.
 #8
avatar+26367 
+3
11 июл. 2019 г.
 #12
avatar+26367 
+2
11 июл. 2019 г.
 #8
avatar+26367 
+5

What is the sum of the numbers in row 2019?

 

\(\begin{array}{|lccccccc|} \hline \text{First row}: & & & &1 \\ \text{Second row}: & & &2 &, &3 \\ \text{Third Row}: & &4 &, &5 &, &6 \\ \text{Fourth row}: & 7 &, &8 &, &9 &, &10 \\ \hline \end{array}\)

 

 

\(\begin{array}{|l|ccccccccc|lcr|} \hline \text{row}& & & & & & & & & & &&\text{sum} \\ \hline 1 & & & & &1 & & & & & &=&1 \\ 2 & & & &\color{red}2 &, &\color{green}3 & & & & \left(\dfrac{2+3}{2}\right) \cdot 2 &=& 5 \\ 3 & & &\color{red}4 &, &5 &, &\color{green}6 & & & \left(\dfrac{4+6}{2}\right) \cdot 3 &=& 15 \\ 4 & & \color{red}7 &, &8 &, &9 &, &\color{green}10 & & \left(\dfrac{7+10}{2}\right) \cdot 4 &=& 34 \\ 5 & \color{red}11& , &12 &, &13 &, &14 &, &\color{green}15 & \left(\dfrac{11+15}{2}\right) \cdot 5 &=& 65 \\ \vdots & & & & &\vdots & & & & & \\ 2019 & & & & & a,\ldots ,b & & & & & \left(\dfrac{a+b}{2}\right) \cdot 2019 &=& \ ? \\ \hline n & & & & & a_n,\ldots ,b_n & & & & & \left(\dfrac{a_n+b_n}{2}\right) \cdot n &=& s_n \\ \hline \end{array}\)

 

\(\mathbf{a_n=\ ?}\)
\(\begin{array}{|lcccccccccc|} \hline \text{First row}: & d_1=1 & &2 & &4 & &7 & & 11 & \ldots \\ \text{Second Row}: & &d_2=1 & &2 & &3 & &4 & \ldots \\ \text{Third row}: & & &d_3=1 & &1 & & 1& \ldots \\ \hline \end{array}\)

\(\begin{array}{lcl} a_n &=& \dbinom{n-1}{0}\cdot d_1 + \dbinom{n-1}{1}\cdot d_2 + \dbinom{n-2}{2}\cdot d_3 \\\\ &=& \dbinom{n-1}{0}\cdot 1 + \dbinom{n-1}{1}\cdot 1 + \dbinom{n-2}{2}\cdot 1 \\\\ &=& 1 + (n-1)\cdot 1 + \dfrac{(n-2)(n-1)}{2\cdot 1}\cdot 1 \\\\ &=& 1 + n-1 + \dfrac{(n-2)(n-1)}{2} \\\\ \mathbf{a_n} &=& \mathbf{n +\dfrac{(n-2)(n-1)}{2}} \\ \end{array}\)

 

\(\mathbf{b_n=\ ?}\)

\(\begin{array}{|lcccccccccc|} \hline \text{First row}: & d_1=1 & &3 & &6 & &10 & & 15 & \ldots \\ \text{Second Row}: & &d_2=2 & &3 & &4 & &5 & \ldots \\ \text{Third row}: & & &d_3=1 & &1 & & 1& \ldots \\ \hline \end{array}\)

\(\begin{array}{lcl} b_n &=& \dbinom{n-1}{0}\cdot d_1 + \dbinom{n-1}{1}\cdot d_2 + \dbinom{n-2}{2}\cdot d_3 \\\\ &=& \dbinom{n-1}{0}\cdot 1 + \dbinom{n-1}{1}\cdot 2 + \dbinom{n-2}{2}\cdot 1 \\\\ &=& 1 + (n-1)\cdot 2 + \dfrac{(n-2)(n-1)}{2\cdot 1}\cdot 1 \\\\ &=& 1 + 2n-2 + \dfrac{(n-2)(n-1)}{2} \\\\ \mathbf{b_n} &=& \mathbf{2n-1 +\dfrac{(n-2)(n-1)}{2}} \\ \end{array}\)

 

 

\(\begin{array}{|rcll|} \hline s_n &=& \left(\dfrac{a_n+b_n}{2}\right) \cdot n \\\\ &=& \left(\dfrac{n +\dfrac{(n-2)(n-1)}{2}+2n-1 +\dfrac{(n-2)(n-1)}{2}}{2}\right) \cdot n \\\\ &=& \left(\dfrac{3n-1 + (n-2)(n-1)}{2} \right) \cdot n \\\\ &=& \left(\dfrac{3n-1 + n^2-3n+2}{2} \right) \cdot n \\\\ \mathbf{s_n} &=& \mathbf{\left(\dfrac{ n^2+1}{2} \right) \cdot n} \\ \hline \end{array}\)

 

The sum of the numbers in row 2019

\(\begin{array}{|rcll|} \hline \mathbf{s_n} &=& \mathbf{\left(\dfrac{ n^2+1}{2} \right) \cdot n} \\\\ s_{2019} &=& \left(\dfrac{ 2019^2+1}{2} \right) \cdot 2019 \\\\ s_{2019} &=& 2038181 \cdot 2019 \\\\ \mathbf{s_{2019}} &=& \mathbf{4115087439} \\ \hline \end{array}\)

 

laugh

11 июл. 2019 г.
 #10
avatar+26367 
+2

What is the sum of the following sequence:
\(\mathbf{1\cdot 2\cdot 3\cdot 4\cdot 5 + 2\cdot 3\cdot 4\cdot 5\cdot 6 + 3\cdot 4\cdot 5\cdot 6\cdot 7 + 4\cdot 5\cdot 6\cdot 7\cdot 8 +\ldots + 996\cdot 997\cdot 998\cdot 999\cdot 1000}\) .

 

Using the hockey stick identity and the  binomial coefficient  \(\dbinom nk\)

 

\(\begin{array}{|rcll|} \hline &&\mathbf{ 1\cdot 2\cdot 3\cdot 4\cdot 5 + 2\cdot 3\cdot 4\cdot 5\cdot 6 + 3\cdot 4\cdot 5\cdot 6\cdot 7 + 4\cdot 5\cdot 6\cdot 7\cdot 8 +\ldots + 996\cdot 997\cdot 998\cdot 999\cdot 1000 } \\\\ &=& \dfrac{5!}{0!} + \dfrac{6!}{1!} + \dfrac{7!}{2!} + \dfrac{8!}{3!} + \dfrac{9!}{4!} + \dfrac{10!}{5!} + \dfrac{11!}{6!} +\ldots + \dfrac{1000!}{995!} \\\\ &=& \dfrac{5!}{5!0!}5! + \dfrac{6!}{5!1!}5! + \dfrac{7!}{5!2!}5! + \dfrac{8!}{5!3!}5! + \dfrac{9!}{5!4!}5! + \dfrac{10!}{5!5!}5! + \dfrac{11!}{5!6!}5! +\ldots + \dfrac{1000!}{5!995!}5! \\\\ &=& \dbinom 55 5! + \dbinom 65 5! + \dbinom 75 5! + \dbinom 85 5! + \dbinom 95 5! + \dbinom {10}5 5! + \dbinom {11}5 5! +\ldots + \dbinom {1000}5 5! \\\\ &=& 5! \left( \underbrace{\dbinom 55 + \dbinom 65 + \dbinom 75 + \dbinom 85 + \dbinom 95 + \dbinom {10}5 + \dbinom {11}5 +\ldots + \dbinom {1000}5}_{\text{long stick of the hockey in Pascals triangle}} \right) \\\\ &=& 5!*\left(\underbrace{\dbinom{1001}{6}}_{\text{bend of the hockey stick(hockey stick identity)} } \right) \\\\ &=& 5!* \dbinom{1001}{6} \\\\ &=& 5!* \dfrac{1001!}{6!995!} \\\\ &=& 120*1376423590241700 \\ &=& \mathbf{165170830829004000} \\ \hline \end{array}\)

 

laugh

11 июл. 2019 г.
 #3
avatar+26367 
+2

2) 

In a certain sequence the first term is \(a_1= 2007\) and the second term is \(a_2 = 2008\).

Furthermore, the values of the remaining terms are chosen so that \( a_n + a_{n + 1} + a_{n + 2} = n\) for all \(n \ge 1\).

Determine \(a_{1000}\).

 

\(\begin{array}{|lrcll|} \hline (1) & a_n + a_{n + 1} + a_{n + 2} &=& n \\ (2) & a_{n+1} + a_{n + 2} + a_{n + 3} &=& n+1 \\ \hline (2)-(1): & a_{n+1} + a_{n + 2} + a_{n + 3}-(a_n + a_{n + 1} + a_{n + 2}) &=& n+1-n \\ & a_{n+1} + a_{n + 2} + a_{n + 3}-a_n - a_{n + 1} - a_{n + 2} &=& 1 \\ & a_{n + 3}-a_n &=& 1 \\ & \mathbf{a_{n + 3}} &=& \mathbf{1+a_n} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline & \mathbf{a_{n + 3}} &=& \mathbf{1+a_n} \\ \hline n= 1: & a_{1 + 3}=\mathbf{a_{4}} &=& \mathbf{1+a_1} \\ \hline n= 4: & a_{4 + 3}=a_{7} &=& 1+a_4 \\ & &=& 1+( 1+a_1) \\ & \mathbf{ a_{7}} &=& \mathbf{2+a_1} \\ \hline n= 7: & a_{7 + 3}=a_{10} &=& 1+a_7 \\ & &=& 1+( 2+a_1) \\ & \mathbf{ a_{10}} &=& \mathbf{3+a_1} \\ \hline n= 10: & a_{10 + 3}=a_{13} &=& 1+a_{10} \\ & &=& 1+( 3+a_1) \\ & \mathbf{ a_{13}} &=& \mathbf{4+a_1} \\ \hline \ldots \\ \hline \end{array}\)

 

generalized:

\(\begin{array}{|rcll|} \hline \mathbf{a_{4}} &=& \mathbf{1+a_1} \\ \mathbf{ a_{7}} &=& \mathbf{2+a_1} \\ \mathbf{ a_{10}} &=& \mathbf{3+a_1} \\ \mathbf{ a_{13}} &=& \mathbf{4+a_1} \\ \ldots \\ \mathbf{ a_{1+3m}} &=& \mathbf{m+a_1} \\ \hline \end{array} \)

 

\(\mathbf{a_{1000} =\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{ a_{1+3m}} &=& \mathbf{m+a_1} \\ \hline 1+3m &=& 1000 \\ 3m &=& 999 \\ m &=& 333 \\ a_{1000} &=& 333+a_1 \quad | \quad a_1 =2007 \\ a_{1000} &=& 333 + 2007 \\ \mathbf{a_{1000}} &=& \mathbf{2340} \\ \hline \end{array}\)

 

laugh

10 июл. 2019 г.
 #2
avatar+26367 
+2

1)
Find the sum of the infinite series
\(1+2\left(\dfrac{1}{1998}\right)+3\left(\dfrac{1}{1998}\right)^2+4\left(\dfrac{1}{1998}\right)^3+\cdots\).

 

\(\text{Let $r=\dfrac{1}{1998} $}\)

 

\(\begin{array}{|rcll|} \hline s&=& \mathbf{1+2\left(\dfrac{1}{1998}\right)+3\left(\dfrac{1}{1998}\right)^2+4\left(\dfrac{1}{1998}\right)^3+\cdots} \\ s&=& \mathbf{1+2r +3r^2+4r^3+\cdots + nr^{n-1} + \ldots} \\ \hline \end{array} \)

 

\(\begin{array}{|rcrl|} \hline s_n &=& 1+&2r +3r^2+4r^3+\cdots + nr^{n-1} \quad |\quad \cdot r \\ rs_n &=& & 1r +2r^2+3r^3+\cdots + (n-1)r^{n-1}+nr^n \\ \hline s_n-rs_n &=& 1+&r+r^2+r^3+\ldots + r^{n-1} -nr^n \\ \hline \end{array}\\ \begin{array}{|rclrcrl|} \hline s_n(1-r) &=& \underbrace{1+r+r^2+r^3+\ldots + r^{n-1}}_{=S_n(\text{ geometric progression})} -nr^n \\ s_n(1-r) &=& S_n -nr^n & S_n &=& 1+&r+r^2+r^3+\ldots + r^{n-1} \quad | \quad \cdot r\\ & & & rS_n &=& &r+r^2+r^3+\ldots + r^{n-1}+r^n \\ \hline & & & S_n-rS_n &=& 1- &r^n \\ & & & S_n(1-r) &=& 1- &r^n \\ & & & S_n &=& \dfrac{1- r^n}{1-r} \\ s_n(1-r) &=& \dfrac{1- r^n}{1-r} -nr^n \\ s_n &=& \dfrac{1- r^n}{(1-r)^2} - \dfrac{nr^n}{1-r} \\ s &=& \lim \limits_{n\to \infty} s_n \\ s &=& \lim \limits_{n\to \infty} \dfrac{1- r^n}{(1-r)^2} - \dfrac{nr^n}{1-r} \\ && \boxed{\lim \limits_{n\to \infty} r^n = \lim \limits_{n\to \infty} \left(\dfrac{1}{1998}\right)^n = 0} \\ s &=& \dfrac{1- 0}{(1-r)^2} - 0 \\ s &=& \dfrac{1}{(1-r)^2} \\ s &=& \dfrac{1}{\left(1-\dfrac{1}{1998}\right)^2} \\ s &=& \left(\dfrac{1998}{1997}\right)^2 \\ \mathbf{s} &=& \mathbf{1.00100175300507095\ldots...} \\ \hline \end{array}\)

 

laugh

10 июл. 2019 г.