For a certain value of r, the system
x + y + 3z = 10,
-4x + 2y + 5z = 7,
rx + z = 3
has no solutions. What is this value of r?
There is no solution, if the determinant \(\begin{vmatrix} 1&1&3\\-4&2&5\\r&0&1\end{vmatrix} = 0 \)
\(\begin{array}{|rcll|} \hline \begin{vmatrix} 1&1&3\\-4&2&5\\r&0&1\end{vmatrix} &=& 0 \\ 1\cdot2\cdot1+r\cdot1\cdot5+(-4)\cdot0\cdot3-r\cdot2\cdot3-(-4)\cdot1\cdot1-1\cdot5\cdot0 &=& 0 \\ 2+5r+0-6r+4-0&=& 0 \\ 6-r &=& 0 \\ \mathbf{r} &=& \mathbf{6} \\ \hline \end{array} \)
answer see also: https://web2.0calc.com/questions/for-a-certain-value-of-nbsp-k-nbsp-the-system_1
There exist positive integers n and k such that
\(32 \dbinom{6}{6} + 31 \dbinom{7}{6} + 30 \dbinom{8}{6} + \dots + 3 \dbinom{35}{6} + 2 \dbinom{36}{6} + \dbinom{37}{6} = \dbinom{n}{k}\)
Enter the ordered pair \((n, k)\)
Using the hockey stick identity: \(\sum \limits_{i=r}^{n} \dbinom{i}{r} = \dbinom{n+1}{r+1} \qquad \text{for } n,r\in \mathbb{N},\quad n \geq r\)
see: https://en.wikipedia.org/wiki/Hockey-stick_identity
\(\begin{array}{|rcll|} \hline &&\mathbf{ 32 \dbinom{6}{6} + 31 \dbinom{7}{6} + 30 \dbinom{8}{6} + \dots + 3 \dbinom{35}{6} + 2 \dbinom{36}{6} + \dbinom{37}{6} } \\\\ &=& \sum \limits_{i=6}^{37} \dbinom{i}{r} +\sum \limits_{i=6}^{36} \dbinom{i}{r} +\sum \limits_{i=6}^{35} \dbinom{i}{r} +\sum \limits_{i=6}^{34} \dbinom{i}{r} +\sum \limits_{i=6}^{33} \dbinom{i}{r} +\sum \limits_{i=6}^{32} \dbinom{i}{r} \\ && +\sum \limits_{i=6}^{31} \dbinom{i}{r} +\sum \limits_{i=6}^{30} \dbinom{i}{r} +\sum \limits_{i=6}^{29} \dbinom{i}{r} +\sum \limits_{i=6}^{28} \dbinom{i}{r} +\sum \limits_{i=6}^{27} \dbinom{i}{r} +\sum \limits_{i=6}^{26} \dbinom{i}{r} \\ && +\sum \limits_{i=6}^{25} \dbinom{i}{r} +\sum \limits_{i=6}^{24} \dbinom{i}{r} +\sum \limits_{i=6}^{23} \dbinom{i}{r} +\sum \limits_{i=6}^{22} \dbinom{i}{r} +\sum \limits_{i=6}^{21} \dbinom{i}{r} +\sum \limits_{i=6}^{20} \dbinom{i}{r} \\ && +\sum \limits_{i=6}^{19} \dbinom{i}{r} +\sum \limits_{i=6}^{18} \dbinom{i}{r} +\sum \limits_{i=6}^{17} \dbinom{i}{r} +\sum \limits_{i=6}^{16} \dbinom{i}{r} +\sum \limits_{i=6}^{15} \dbinom{i}{r} +\sum \limits_{i=6}^{14} \dbinom{i}{r} \\ && +\sum \limits_{i=6}^{13} \dbinom{i}{r} +\sum \limits_{i=6}^{12} \dbinom{i}{r} +\sum \limits_{i=6}^{11} \dbinom{i}{r} +\sum \limits_{i=6}^{10} \dbinom{i}{r} +\sum \limits_{i=6}^{9} \dbinom{i}{r} +\sum \limits_{i=6}^{8} \dbinom{i}{r} \\ && +\sum \limits_{i=6}^{7} \dbinom{i}{r} +\sum \limits_{i=6}^{6} \dbinom{i}{r} \\ \\ &=& \dbinom{38}{7} +\dbinom{37}{7} +\dbinom{36}{7} +\dbinom{35}{7} +\dbinom{34}{7} +\dbinom{33}{7} \\ && \dbinom{32}{7} +\dbinom{31}{7} +\dbinom{30}{7} +\dbinom{29}{7} +\dbinom{28}{7} +\dbinom{27}{7} \\ && \dbinom{26}{7} +\dbinom{25}{7} +\dbinom{24}{7} +\dbinom{23}{7} +\dbinom{22}{7} +\dbinom{21}{7} \\ && \dbinom{20}{7} +\dbinom{19}{7} +\dbinom{18}{7} +\dbinom{17}{7} +\dbinom{16}{7} +\dbinom{15}{7} \\ && \dbinom{14}{7} +\dbinom{13}{7} +\dbinom{12}{7} +\dbinom{11}{7} +\dbinom{10}{7} +\dbinom{9}{7} \\ && +\dbinom{8}{7} +\dbinom{7}{7} \\\\ &=& \sum \limits_{i=7}^{38} \dbinom{i}{r} \\\\ &=& \mathbf{\dbinom{39}{8}} \\ \hline \end{array}\)