heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+2
20 нояб. 2019 г.
 #1
avatar+26398 
+4

In triangle ABC, side AB = 20, AC = 11, and BC = 13.  

Find the diameter of the semicircle inscribed in triangle ABC, whose diameter lies on AB, and that is tangent to AC and BC. 

 

1. sin-rule:

\(\begin{array}{|lrcll|} \hline (1) & \dfrac{\sin(A)}{13} &=& \dfrac{\sin(B)}{11} \\ & \mathbf{\sin(A)} &=& \mathbf{\dfrac{13}{11} \sin(B)} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (2) & 20 &=& x+y+2r \\ & \mathbf{x} &=& \mathbf{20-y-2r} \\ \hline \end{array}\)

 

2. 

\(\begin{array}{|lrcll|} \hline (3) & \mathbf{\sin(B)} &=& \mathbf{\dfrac{r}{y+r}} \\\\ (4) & \sin(A) &=& \dfrac{r}{x+r} \quad | \quad \mathbf{ \sin(A)= \dfrac{13}{11} \sin(B) } \\\\ & \dfrac{13}{11} \sin(B) &=& \dfrac{r}{x+r} \quad | \quad \mathbf{x=20-y-2r} \\\\ & \dfrac{13}{11} \sin(B) &=& \dfrac{r}{20-y-2r+r} \\\\ & \mathbf{\dfrac{13}{11} \sin(B)} &=& \mathbf{\dfrac{r}{20-y-r}} \\ \hline \end{array}\)

 

3. cos-rule:

\(\begin{array}{|lrcll|} \hline (5) & 11^2 &=& 13^2+20^2-2*13*30*\cos(B) \\\\ & \cos(B) &=& \dfrac{13^2+20^2-11^2}{2*13*30} \\ & \cos(B) &=& \dfrac{56}{65} \\\\ & \sin(B) &=& \sqrt{1-\cos^2(B)} \\ & \sin(B) &=& \sqrt{1- \left(\dfrac{56}{65}\right)^2 } \\ & \mathbf{\sin(B)} &=& \mathbf{ \dfrac{33}{65}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (3) & \mathbf{\sin(B)} &=& \mathbf{\dfrac{r}{y+r}} \quad | \quad \mathbf{\sin(B)=\dfrac{33}{65}} \\ & \dfrac{33}{65} &=& \dfrac{r}{y+r} \\ & 33(y+r) &= 65r \\ & 33y &=& 65r - 33r \\ & 33y &=& 32r \\ (6) & \mathbf{y} &=& \mathbf{ \dfrac{32}{33}r } \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline (4) & \mathbf{\dfrac{13}{11} \sin(B)} &=& \mathbf{\dfrac{r}{20-y-r}} \quad | \quad \mathbf{\sin(B)=\dfrac{33}{65}},\ \mathbf{y=\dfrac{32}{33}r } \\\\ & \dfrac{13}{11}*\dfrac{33}{65} &=& \dfrac{r}{20-\dfrac{32}{33}r-r} \\\\ & \dfrac{13*3}{65} &=& \dfrac{r}{20-\dfrac{65}{33}r } \\\\ & \dfrac{39}{65} &=& \dfrac{r}{20-\dfrac{65}{33}r } \\\\ & \left( 20-\dfrac{65}{33}r\right)*39 &=& 65r \\\\ & 20*39 - \dfrac{65*39}{33}r &=& 65r \\\\ & 65r + \dfrac{65*39}{33}r &=& 20*39 \\ \\ & 65r*\left(1 + \dfrac{ 39}{33} \right) &=& 20*39 \\ \\ & \dfrac{65*72}{33}r &=& 20*39 \\ \\ & r &=& \dfrac{33*20*39 } {65*72}\\ \\ & \mathbf{r} &=& \mathbf{5.5} \\ \hline \end{array}\)

 

The diameter of the semicircle \(= 2r = 2*5.5 = \mathbf{11}\)

 

laugh

19 нояб. 2019 г.
 #2
avatar+26398 
+3

Vollständige Induktion \(\sum \limits_{k=1}^{2^n} \dfrac{1}{k} \geq 1 + \dfrac{n}{2}\)

 

Induktionsanfang:

\(\begin{array}{|lrcll|} \hline n=1: & \sum \limits_{k=1}^{2^1} \dfrac{1}{k} = \dfrac{1}{1} + \dfrac{1}{2} = \dfrac{3}{2} \geq \dfrac{3}{2} = \dfrac{1}{1} + \dfrac{1}{2} \ \checkmark \\ \hline \end{array}\)

 

Induktionsannahme: \(\sum \limits_{k=1}^{2^n} \dfrac{1}{k} \geq 1 + \dfrac{n}{2}\)

 

Induktionsschritt:

\(\sum \limits_{k=1}^{2^{n+1}} \dfrac{1}{k} \geq 1 + \dfrac{n+1}{2} \\ \)

\(\begin{array}{|rcll|} \hline \mathbf{\sum \limits_{k=1}^{2^{n+1}} \dfrac{1}{k} } &\geq& \mathbf{ 1 + \dfrac{n+1}{2} =1 + \dfrac{n}{2} +\dfrac{1}{2} } \\\\ \hline \\ \sum \limits_{k=1}^{2^{n+1}} \dfrac{1}{k} &=& \sum \limits_{k=1}^{2^{n}} \dfrac{1}{k} + \sum \limits_{k=2^{n}+1}^{2^{n+1}} \dfrac{1}{k} \\ &\geq& 1 + \dfrac{n}{2} + \sum \limits_{k=2^{n}+1}^{2^{n+1}} \underbrace{\dfrac{1}{k}}_{\geq \dfrac{1}{2^{n+1}} ^{1)} } \quad \text{nach Induktionsannahme} \\ &\geq& 1 + \dfrac{n}{2} + \sum \limits_{k=2^{n}+1}^{2^{n+1}} \dfrac{1}{2^{n+1} } \quad 2^n \text{Summanden} ^{2)} \\ &=& 1 + \dfrac{n}{2} + 2^n\left( \dfrac{1}{2^{n+1} } \right) \\ &=& 1 + \dfrac{n}{2} + 2^{n-n-1} \\ &=& 1 + \dfrac{n}{2} +\dfrac{1}{2} \ \checkmark\\ \hline \end{array} \)

 

\(\begin{array}{|lrcll|} \hline ^{1)} \text{Beispiel n=2: } & \sum \limits_{k=2^{2}+1}^{2^{2+1}} \dfrac{1}{k} = \sum \limits_{k=5}^{8} \dfrac{1}{k} = \dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8} \geq 4\cdot \dfrac{1}{8} \\ \hline \end{array} \)

\(\begin{array}{|lrcll|} \hline ^{2)} & (2^n+1)-2^n &\ldots& 2^{n+1} - (2^n) \\ & 1 &\ldots& 2\cdot 2^{n} - (2^n) \\ & 1 &\ldots& 2^n \\ \hline \end{array}\)

 

laugh

18 нояб. 2019 г.
 #3
avatar+26398 
+2

There are 8 ways that 1 x 1 and 2 x 2 squares can be arranged in a 2 x 5 grid:

 

 

Find the number of ways that 1 x 1 and 2 x 2 squares can be arranged in a 2 x 50 grid.

 

\(\begin{array}{|c|c|c|c|} \hline & \text{Starts with} & \text{Starts with} \\ \text{grid:} & 2\times 1 & 2\times 2 & \text{sum} \\ \hline 2 \times 1 & 1 & 0 & 1 = F_{2} \\ \hline 2 \times 2 & 1 & 1 & 2 = F_{3} \\ \hline 2 \times 3 & 2 & 1 & 3 = F_{4} \\ \hline 2 \times 4 & 3 & 2 & 5 = F_{5} \\ \hline 2 \times 5 & 5 & 3 & 8 = F_{6} \\ \hline 2 \times 6 & 8 & 5 & 13 = F_{7} \\ \hline 2 \times 7 & 13 & 8 & 21 = F_{8} \\ \hline \ldots & \ldots \\ 2 \times 10 & 55 & 34 & 89 = F_{11} \\ \hline \ldots & \ldots \\ \hline 2 \times k & F_k & F_{k-1} & F_{k+1} \\ \hline 2\times 50 & F_{50} & F_{49} & 20365011074= F_{51} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline \mathbf{ F_k \text{ is the } k^{th} \text{ Fibonacci Number:}} \\ F_1 = 1,\ F_2 = 1,\ F_3 = 2,\ F_4 = 3,\ F_5 = 5, \\ F_6 = 8,\ F_7 = 13,\ F_8 = 21,\ F_9 = 34,\ F_{10} = 55,\ldots , \\ F_{49} = 7778742049,\ F_{50} =12586269025,\ F_{51} = 20365011074 \\ \hline \end{array}\)

 

hint:

Fibonacci Number as Sum of Binomial Coefficients:

\(\begin{array}{rcll} \displaystyle F_n &=& \displaystyle \sum_{k \mathop = 0}^{\Big\lfloor {\dfrac {n - 1} 2}\Big\rfloor } \dbinom {n - k - 1} k \\ &=&\displaystyle \binom {n - 1} 0 + \binom {n - 2} 1 + \binom {n - 3} 2 + \dotsb + \binom {n - j} {j - 1} + \binom {n - j - 1} j \quad \text{ where } \quad j = \Big\lfloor {\dfrac {n - 1} 2} \Big\rfloor \\ \end{array}\)

 

source: https://proofwiki.org/wiki/Fibonacci_Number_as_Sum_of_Binomial_Coefficients

 

laugh

17 нояб. 2019 г.
 #6
avatar+26398 
+3
15 нояб. 2019 г.