heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #4
avatar+26398 
+3
11 дек. 2019 г.
 #1
avatar+26398 
+2

Find

\(\sin\left( \arcsin\left(\dfrac{3}{5}\right) + \arccos\left(\dfrac{15}{17}\right) \right)\).

 

\(\text{Let $x=\dfrac{3}{5},\ y=\dfrac{15}{17} $}\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\sin\left( \arcsin\left(\dfrac{3}{5}\right) + \arccos\left(\dfrac{15}{17}\right) \right)} \\\\ &=& \sin\Big( \underbrace{\arcsin\left(x\right)}_{\alpha} + \underbrace{\arccos\left(y\right)}_{\beta} \Big) \\ && \boxed{\text{Formula: } \sin(\alpha+\beta)=\sin(\alpha)\cos(\beta)+ \cos(\alpha)\sin(\beta)} \\\\ &=& \sin\Big(\arcsin\left(x\right)\Big)\cos\Big(\arccos\left(y\right)\Big) + \cos\Big(\arcsin\left(x\right)\Big)\sin\Big(\arccos\left(y\right)\Big) \\ &=& xy + \mathbf{\cos\Big(\arcsin\left(x\right)\Big)}\sin\Big(\arccos\left(y\right)\Big) \\ && \boxed{ \arcsin\left(x\right) = \alpha\\ x=\sin(\alpha)\\ x^2=\sin^2(\alpha)\\ x^2=1-\cos^2(\alpha)\\ \cos^2(\alpha)=1-x^2 \\ \cos(\alpha) =\sqrt{1-x^2} \\ \mathbf{\cos\Big(\arcsin\left(x\right)\Big) =\sqrt{1-x^2} } } \\\\ &=& xy + \sqrt{1-x^2}\sin\Big(\arccos\left(y\right)\Big) \\ && \boxed{ \arccos\left(y\right) = \beta\\ y=\cos(\beta)\\ y^2=\cos^2(\beta)\\ y^2=1-\sin^2(\beta)\\ \sin^2(\beta)=1-y^2 \\ \sin(\beta) =\sqrt{1-y^2} \\ \mathbf{\sin\Big(\arccos\left(y\right)\Big) =\sqrt{1-y^2} } } \\\\ &=& xy + \sqrt{1-x^2}\sqrt{1-y^2} \quad | \quad x=\dfrac{3}{5},\ y=\dfrac{15}{17} \\ &=& \dfrac{3}{5}*\dfrac{15}{17} + \sqrt{1-\dfrac{3^2}{5^2}}\sqrt{1-\dfrac{15^2}{17^2}} \\ &=& \dfrac{45}{85} + \dfrac{4}{5} * \dfrac{8}{17} \\ &=& \dfrac{45}{85} + \dfrac{32}{85} \\ &=& \mathbf{ \dfrac{77}{85} } \\ \hline \end{array}\)

 

laugh

11 дек. 2019 г.
 #2
avatar+26398 
+2

Part 2

 

(b) Find the sum of all the numbers on the black squares. (|a| < 1 and |b| < 1)

 

Sum of all the numbers on the black squares:

\(1 \\ +a^2+ab+b^2 \\ +a^4+a^3b+a^2b^2+ab^3+b^4 \\ +a^6+a^5b+a^4b^2+a^3b^3+a^2b^4+ab^5+b^6 \\ +\ldots\)

 

Infinite sum:
\(\sum \limits_{l=0}^{\infty} \left( \sum \limits_{k=0}^{2l} a^{2l-k}b^k \right) \)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\sum \limits_{l=0}^{\infty} \left( \sum \limits_{k=0}^{2l} a^{2l-k}b^k \right)} \\ &=& \sum \limits_{l=0}^{\infty} \left( \sum \limits_{k=0}^{2l} a^{2l}a^{-k}b^k \right) \\ &=& \sum \limits_{l=0}^{\infty} a^{2l}\left( \sum \limits_{k=0}^{2l} a^{-k}b^k \right) \\ &=& \sum \limits_{l=0}^{\infty} a^{2l} \left( \sum \limits_{k=0}^{2l} \left(\dfrac{b}{a}\right)^k \right) \quad | \quad \sum \limits_{k=0}^{2l} \left(\dfrac{b}{a}\right)^k = \dfrac{1- \left(\dfrac{b}{a}\right)^{2l+1} }{1-\dfrac{b}{a} } \\ &=& \sum \limits_{l=0}^{\infty} a^{2l} \left( \dfrac{1- \left(\dfrac{b}{a}\right)^{2l+1} }{1-\dfrac{b}{a} } \right) \\ &=& \sum \limits_{l=0}^{\infty} a^{2l} \left( \dfrac{a- \left(\dfrac{b}{a}\right)^{2l}b }{a-b } \right) \\ &=& \dfrac{1}{(a-b)} \sum \limits_{l=0}^{\infty} a^{2l} \left( a- \left(\dfrac{b}{a}\right)^{2l}b \right) \\ &=& \dfrac{1}{(a-b)} \sum \limits_{l=0}^{\infty} \left( a^{2l+1}- \left(\dfrac{ a^{2l}b^{2l}}{a^{2l}}\right)b \right) \\ &=& \dfrac{1}{(a-b)} \sum \limits_{l=0}^{\infty} \left( a^{2l+1}- b^{2l+1} \right) \\ &=& \dfrac{1}{(a-b)} \left( \sum \limits_{l=0}^{\infty} \left( a^{2l+1} \right) - \sum \limits_{l=0}^{\infty} \left( b^{2l+1} \right) \right) \\ &=& \dfrac{1}{(a-b)} \left( a\sum \limits_{l=0}^{\infty} a^{2l} - b\sum \limits_{l=0}^{\infty} b^{2l} \right) \quad | \quad \sum \limits_{l=0}^{\infty} a^{2l} = \dfrac{1}{1-a^2},\ \sum \limits_{l=0}^{\infty} b^{2l} = \dfrac{1}{1-b^2} \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{a}{1-a^2} - \dfrac{b}{1-b^2} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{a(1-b^2)-b(1-a^2)}{(1-a^2)(1-b^2)} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{a-ab^2-b+ba^2}{(1-a^2)(1-b^2)} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{(a-b)+ab(a-b)}{(1-a^2)(1-b^2)} \right) \\ &=& \dfrac{1}{(a-b)} \left( \dfrac{(a-b)(1+ab)}{(1-a^2)(1-b^2)} \right) \\ &=& \mathbf{ \dfrac{1+ab}{(1-a^2)(1-b^2)} } \\ \hline \end{array}\)

 

laugh

10 дек. 2019 г.