heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #1
avatar+26398 
+2

Find the 3 smallest positive x-intercepts of the graph of \(y = \cos(12x) + \cos(14x)\) and list them in increasing order.

 

Formula: \(\boxed{\cos(x) + \cos(y) = 2\cos\left(\dfrac{x+y}{2}\right)\cos\left(\dfrac{x-y}{2}\right) }\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\cos(12x) + \cos(14x)} \\ &=& \cos(14x) + \cos(12x) \\ &=& 2\cos\left(\dfrac{14x+12x}{2}\right)\cos\left(\dfrac{14x-12x}{2}\right) \\ &=& 2\cos\left(\dfrac{26x}{2}\right)\cos\left(\dfrac{2x}{2}\right) \\ &=& \mathbf{2\cos(13x)\cos(x)} \\ \hline \end{array}\)

 

 x-intercepts of the graph

\(\begin{array}{|rcll|} \hline \mathbf{2\cos(13x)\cos(x)} &=& 0 \quad | \quad : 2 \\ \cos(13x)\cos(x) &=& 0 \\ \hline \mathbf{\cos(x)} &=& \mathbf{0} \\ x &=& \pm \arccos(0) +2k\pi \qquad k\in \mathbb{Z} \\ x &=& \pm \dfrac{\pi}{2} +2k\pi \\\\ x &=& \mathbf{+} \dfrac{\pi}{2}+2k\pi \qquad k = 0 \\ x &=& + \dfrac{\pi}{2} \\ \mathbf{x} &=& \mathbf{1.57079632679}\ \text{rad} \\\\ x &=& \mathbf{-} \dfrac{\pi}{2} +2k\pi \qquad k = 1 \\ x &=& - \dfrac{\pi}{2} +2 \pi \\ \mathbf{x} &=& \mathbf{4.71238898038}\ \text{rad} \\ \hline \mathbf{\cos(13x)} &=& \mathbf{0} \\ 13x &=& \pm \arccos(0) +2k\pi \qquad k\in \mathbb{Z} \\ 13x &=& \pm \dfrac{\pi}{2} +2k\pi \\\\ 13x &=& \mathbf{+}\dfrac{\pi}{2} +2k\pi \\ x &=& \dfrac{\pi}{2*13}+\dfrac{2\pi k}{13} \qquad k = 0 \\ x &=& \dfrac{\pi}{26} \\ \mathbf{x} &=& \mathbf{0.12083048668}\ \text{rad} \\\\ x &=& \mathbf{+}\dfrac{\pi}{26}+\dfrac{2\pi k}{13} \qquad k = 1 \\ x &=& \dfrac{\pi}{26}+\dfrac{2\pi}{13} \\ x &=& \dfrac{5\pi}{26} \\ \mathbf{x} &=& \mathbf{0.60415243338}\ \text{rad} \\\\ 13x &=& \mathbf{-}\dfrac{\pi}{2} +2k\pi \\ x &=& -\dfrac{\pi}{2*13}+\dfrac{2\pi k}{13} \qquad k = 1 \\ x &=& -\dfrac{\pi}{26}+\dfrac{2\pi}{13} \\ x &=& \dfrac{3\pi}{26} \\ \mathbf{x} &=& \mathbf{0.36249146003}\ \text{rad} \\ \hline \end{array}\)


The 3 smallest positive x-intercepts of the graph:
\(\mathbf{\dfrac{\pi}{26} },\ \mathbf{\dfrac{3\pi}{26} },\ \mathbf{\dfrac{5\pi}{26} } \)

 

laugh

20 апр. 2020 г.
 #2
avatar+26398 
+5

A mathematician works for \(t\) hours per day and solves \(p\) problems per hour, where \(t\) and \(p\) are positive integers and \(1 < p < 20\) .
One day, the mathematician drinks some coffee and discovers that he can now solve \(3p+7\) problems per hour.
In fact, he only works for \(t-4\) hours that day, but he still solves twice as many problems as he would in a normal day.
How many problems does he solve the day he drinks coffee?

 

Formula: \((3p+7)(t-4) = 2tp\)

 

\(\begin{array}{|rcll|} \hline (3p+7)(t-4) &=& 2tp \\ 3pt-12p+7t-28 &=& 2tp \\ pt-12p+7t-28 &=& 0 \\ t(p+7)-12p-28 &=& 0 \\ t(p+7)&=& 12p+28 \\ t(p+7)&=& 4(3p+7) \\ t &=& 4\left(\dfrac{3p+7}{p+7}\right) \\ t &=& 4\left(\dfrac{3p+21-14}{p+7}\right) \\ t &=& 4\left(\dfrac{3(p+7)-14}{p+7}\right) \\ \mathbf{t} &=& \mathbf{4\left(3-\dfrac{14}{p+7}\right)} \\ \hline \end{array} \)

 

\(t\) and \(p\) are positive integers

\(\begin{array}{|rcll|} \hline \dfrac{14}{p+7} &=& 0 \qquad t > 0 \checkmark \\ \dfrac{14}{p+7} &=& 1 \qquad t > 0 \checkmark \\ \dfrac{14}{p+7} &=& 2 \qquad t > 0 \checkmark \\ \dfrac{14}{p+7} &=& 3 \qquad t = 0 \\ \dfrac{14}{p+7} &>& 3 \qquad t < 0 \\ \hline \end{array} \)

 

\(\mathbf{p=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{\dfrac{14}{p+7}} &=& \mathbf{0} \\ 14 &=& 0(p+7) \\ 14 &=& 0 \qquad | \text{ does not yield any value of p.} \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \mathbf{\dfrac{14}{p+7}} &=& \mathbf{1} \\ 14 &=& 1(p+7) \\ 14 &=& p+7 \\ \mathbf{p} &=& \mathbf{7}\ \checkmark \\ \hline \end{array} \\ \begin{array}{|rcll|} \hline \mathbf{\dfrac{14}{p+7}} &=& \mathbf{2} \\ 14 &=& 2(p+7) \\ 14 &=& 2p+14 \\ 0 &=& 2p \\ p &=& 0\qquad 1 < p < 20,\ \text{ no solution, p > 1!} \\ \hline \end{array}\)

 

\(\mathbf{t=\ ?}\)

\(\begin{array}{|rcll|} \hline t &=& 4\left(\dfrac{3p+7}{p+7}\right) \quad | \quad \mathbf{p=7} \\ t &=& 4\left(\dfrac{3*7+7}{7+7}\right) \\ t &=& 4\left(\dfrac{4*7}{2*7}\right) \\ t &=& 4\left(\dfrac{4 }{2 }\right) \\ t &=& 4*2 \\ \mathbf{t} &=& \mathbf{8} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline 2tp &=& 2*8*7 \\ \mathbf{2tp} &=& \mathbf{112} \\ \hline \end{array}\)

 

The mathematician solved 112 problems the day he drank coffee.

 

laugh

20 апр. 2020 г.
 #1
avatar+26398 
+3

pls help
\(\text{$\cos(\theta) = -\dfrac{\sqrt{2}}{3}$, where $\pi \leq \theta\leq \dfrac{3\pi}{2}$. [quadrant $III$] } \)
\(\text{$\tan(\beta) = \dfrac{4}{3}$, where $0 \leq \beta \leq \dfrac{\pi}{2}$. [quadrant $I$] }\)
What is the exact value of \(\sin(\theta+\beta) \)

 

\(\begin{array}{rcll} \cos(\theta_{III}) &=& -\dfrac{\sqrt{2}}{3} \\ \tan(\beta_{I}) &=& \dfrac{4}{3} \\ \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sin(\theta_{III}) &=& - \sqrt{1-\cos^2(\theta_{III})} \quad | \quad \boxed{\sin(\theta_{III}) < 0\ !} \\ \sin(\theta_{III}) &=& - \sqrt{1- \left(-\dfrac{\sqrt{2}}{3} \right)^2 } \\ \sin(\theta_{III}) &=& - \sqrt{1- \dfrac{2}{9} } \\ \sin(\theta_{III}) &=& - \sqrt{\dfrac{9-2}{9} } \\ \sin(\theta_{III}) &=& - \sqrt{\dfrac{7}{9} } \\ \mathbf{\sin(\theta_{III})} &=& \mathbf{- \dfrac{\sqrt{7}}{3}} \\ \hline \end{array}\)

 

Formula:

\(\begin{array}{|rcll|} \hline \sin^2(\beta)+\cos^2(\beta) &=& 1 \quad | \quad : \cos^2(\beta) \\ \tan^2(\beta)+1 &=& \dfrac{1}{\cos^2(\beta)} \\ \cos^2(\beta) &=& \dfrac{1}{1+\tan^2(\beta)} \\ \mathbf{\cos(\beta)} &=& \mathbf{\pm\sqrt{ \dfrac{1}{1+\tan^2(\beta)} } } \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \cos(\beta_{I}) &=& +\sqrt{ \dfrac{1}{1+\tan^2(\beta_{I})} } \quad | \quad \boxed{\cos(\beta_{I}) > 0\ !} \\ \cos(\beta_{I}) &=& \sqrt{ \dfrac{1}{1+ \left(\dfrac{4}{3}\right)^2} } \\ \cos(\beta_{I}) &=& \sqrt{ \dfrac{1}{1+ \dfrac{16}{9}} } \\ \cos(\beta_{I}) &=& \sqrt{ \dfrac{1}{\dfrac{9+16}{9}} } \\ \cos(\beta_{I}) &=& \sqrt{ \dfrac{1}{\dfrac{25}{9}} } \\ \cos(\beta_{I}) &=& \sqrt{ \dfrac{9}{25} } \\ \mathbf{\cos(\beta_{I})} &=& \mathbf{\dfrac{3}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sin(\beta_{I}) &=& \tan(\beta_{I})\cos(\beta_{I}) \\ \sin(\beta_{I}) &=& \left(\dfrac{4}{3}\right)\left(\dfrac{3}{5}\right) \\ \mathbf{\sin(\beta_{I})} &=& \mathbf{\dfrac{4}{5}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\sin(\theta_{III}+\beta_{I}) } &=& \mathbf{\sin(\theta_{III})\cos(\beta_{I})+\cos(\theta_{III})\sin(\beta_{I}) } \\ \\ \sin(\theta_{III}+\beta_{I}) &=& \left( - \dfrac{\sqrt{7}}{3} \right) \left( \dfrac{3}{5} \right) + \left( -\dfrac{\sqrt{2}}{3}\right) \left( \dfrac{4}{5}\right) \\ \sin(\theta_{III}+\beta_{I}) &=& -\dfrac{3\sqrt{7}}{15} -\dfrac{4\sqrt{2}}{15} \\ \mathbf{\sin(\theta_{III}+\beta_{I})} &=& \mathbf{-\dfrac{\sqrt{7}}{5} -\dfrac{4\sqrt{2}}{15}} \\ \hline \end{array}\)

 

laugh

17 апр. 2020 г.