heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #3
avatar+26398 
+4
20 янв. 2021 г.
 #3
avatar+26398 
+3

Two 2*8 rectangles overlap, as shown below.
Find the area of the overlapping region (which is shaded)

 

 

\(\text{Let $O=(0,0)$} \\ \text{Let $A=(-1,4)$} \\ \text{Let $B=(1,4)$} \\ \\ \text{Let $E=(x_E,y_E)$} \\ \text{Let area of rectangle $=2*8$ } \\ \text{Let area of triangle $[BEG]=\dfrac{\overline{BG}*h}{2}$ } \\ \text{Let the gray area $=$ area of rectangle$-2*$ area of triangle $[BEG]$ } \\ \text{Let the gray area $= \mathbf{2*8-\overline{BG}*h}$ } \\ \text{Let $h=x_E-x_B$} \\ \text{Let $p=y_B-y_E$} \\ \text{Let $\overline{AB}=\overline{BE}=2$} \\ \text{Let $\overline{BE}^2=p*\overline{BG}$} \)

 

1. rotate

\(\begin{array}{|lrcll|} \hline \text{Rotation matrix } \\ & R&=&\begin{bmatrix} \cos(ß)&\sin(ß) \\ - \sin(ß)&\cos(ß) \\ \end{bmatrix} \\ & B&=&R\cdot A \\\\ & \begin{bmatrix} x_B\\y_B\end{bmatrix} &=&\begin{bmatrix} \cos(ß)&\sin(ß) \\ - \sin(ß)&\cos(ß) \\ \end{bmatrix} \begin{bmatrix} x_A\\y_A\end{bmatrix} \\ \hline \end{array}\)

\(\begin{array}{|rcll|} \hline \begin{bmatrix} 1\\4\end{bmatrix} &=&\begin{bmatrix} \cos(ß)&\sin(ß) \\ - \sin(ß)&\cos(ß) \\ \end{bmatrix} \begin{bmatrix} -1\\4\end{bmatrix} \\\\ -\cos{ß}+4\sin(ß) &=& 1 \qquad (1) \\ \sin{ß}+4\cos(ß) &=& 4 \qquad (2) \\ \\ \mathbf{\sin(ß)} &=& \mathbf{\dfrac{8}{17}} \\\\ \mathbf{\cos(ß)} &=& \mathbf{\dfrac{15}{17}} \\ \hline \end{array}\)

 

2. rotate

\(\begin{array}{|rcll|} \hline \begin{bmatrix} x_E\\y_E\end{bmatrix} &=&\begin{bmatrix} \cos(ß)&\sin(ß) \\ - \sin(ß)&\cos(ß) \\ \end{bmatrix} \begin{bmatrix} 1\\4\end{bmatrix} \\\\ \cos{ß}+4\sin(ß) &=& x_E \qquad (3) \\ x_E &=& \dfrac{15}{17} + 4*\dfrac{8}{17} \\ \mathbf{x_E} &=& \mathbf{\dfrac{47}{17}} \\\\ -\sin{ß}+4\cos(ß) &=& y_E \qquad (4) \\ y_E &=& \dfrac{8}{17} + 4*\dfrac{15}{17} \\ \mathbf{y_E} &=& \mathbf{\dfrac{52}{17}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{h}&=&\mathbf{x_E-x_B} \\\\ h&=&\dfrac{47}{17}-1 \\\\ \mathbf{h}&=&\mathbf{\dfrac{30}{17}} \\\\ \hline \mathbf{p} &=& \mathbf{y_B-y_E} \\\\ p &=& 4- \dfrac{52}{17} \\\\ \mathbf{p}&=&\mathbf{\dfrac{16}{17}} \\\\ \hline \mathbf{\overline{BE}^2} &=& \mathbf{p*\overline{BG}} \quad | \quad BE=2 \\ 2^2 &=& \dfrac{16}{17}*\overline{BG} \\ \overline{BG} &=& \dfrac{4}{\dfrac{16}{17}} \\\\ \mathbf{\overline{BG}} &=& \mathbf{\dfrac{17}{4}} \\\\ \hline \mathbf{\text{Gray area }} &=& \mathbf{2*8-\overline{BG}*h} \\ &=& \mathbf{2*8-\dfrac{17}{4}*\dfrac{30}{17}} \\\\ &=& 2*8-\dfrac{30}{4} \\\\ &=& 16-\dfrac{15}{2} \\\\ &=& \dfrac{32-15}{2} \\\\ &=& \dfrac{17}{2} \\\\ \mathbf{\text{Gray area }} &=& \mathbf{8.5} \\ \hline \end{array}\)

 

laugh

18 янв. 2021 г.
 #1
avatar+26398 
+2

If \(\omega^3 = 1\) and \(\omega \neq 1\),

then compute \((1 - \omega + \omega^2)(1 + \omega - \omega^2)\).

 

My attempt:

\(\begin{array}{|rcll|} \hline \mathbf{ (1 - \omega + \omega^2)(1 + \omega - \omega^2) } \\ &=& \Big(1 - (\omega - \omega^2)\Big) \Big(1 + (\omega - \omega^2)\Big) \\ &=& 1 - (\omega - \omega^2)^2 \\ &=& 1 - (\omega^2 - 2\omega^3+\omega^4) \quad | \quad \omega^3=1 \\ &=& 1 - (\omega^2 - 2+\omega^4) \quad | \quad \omega^4=\omega^3*\omega=\omega \\ &=& 1 - (\omega^2 - 2+\omega) \\ &=& 3 - (\omega^2 + \omega) \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (\omega^2 + \omega)^2 &=& \omega^4 + 2\omega^3 + \omega^2 \quad | \quad \omega^3=1 \\ (\omega^2 + \omega)^2 &=& \omega^4 + 2 + \omega^2 \quad | \quad \omega^4=\omega^3*\omega=\omega \\ (\omega^2 + \omega)^2 &=& \omega + 2 + \omega^2 \\ (\omega^2 + \omega)^2 &=& \omega^2 + \omega + 2 \\ (\omega^2 + \omega)^2- (\omega^2 + \omega) - 2 &=& 0 \quad | \quad \omega^2 + \omega = x \\ \mathbf{x^2-x-2} &=& \mathbf{0} \\\\ x &=& \dfrac{1\pm\sqrt{1-4*(-2)}}{2} \\ x &=& \dfrac{1\pm\sqrt{9}}{2} \\ x &=& \dfrac{1\pm3}{2} \\\\ x_1 &=& \dfrac{1+3}{2} \\ x_1&=& 2 \\ \omega^2 + \omega &=& 2 \qquad \text{no solution!} \\ && \boxed{\omega \ne 1 } \\\\ x_2 &=& \dfrac{1-3}{2} \\ x_2 &=& -1 \\ \mathbf{\omega^2 + \omega }&=& \mathbf{-1} \\ \mathbf{ (1 - \omega + \omega^2)(1 + \omega - \omega^2) } &=& 3 - (\omega^2 + \omega) \\ &=& 3 - (-1) \\ \mathbf{ (1 - \omega + \omega^2)(1 + \omega - \omega^2) }&=& \mathbf{ 4 } \\ \hline \end{array}\)

 

laugh

17 янв. 2021 г.
 #2
avatar+26398 
+2

D,E,F are the feet of the altitudes in triangle ABC.
Find angle DEF (in degrees).

 

\(\text{Let $\angle[DEF]=x$} \\ \text{Let $AB=a$, $AC=b$, $BC=c$} \\ \text{Let $\angle[CBE]=90^\circ-65^\circ=25^\circ$} \\ \text{Let $\angle[EBF]=90^\circ-75^\circ=15^\circ$} \\ \text{Let $BF=c*\cos(40^\circ)$, $BD=a*\cos(40^\circ)$} \\ \text{Let $BE=\dfrac{a*c}{b}\sin(40^\circ)$ } \\ \text{Let $\angle[BDE]=D$, $\angle[BFE]=E$} \\ \text{Let $x =360^\circ-(D+E+40^\circ)=320^\circ-(D+E)$}\)

 

\(\begin{array}{|rcll|} \hline \tan(D) &=& \dfrac{BE*\sin(25^\circ)}{BD-BE*\cos(25^\circ)} \\\\ \tan(D) &=& \dfrac{\dfrac{a*c}{b}*\sin(40^\circ)*\sin(25^\circ)}{a*\cos(40^\circ)-\dfrac{a*c}{b}\sin(40^\circ)*\cos(25^\circ)} \times \dfrac{a}{a} \\\\ \tan(D) &=& \dfrac{\dfrac{c}{b}*\sin(40^\circ)*\sin(25^\circ)}{\cos(40^\circ)-\dfrac{c}{b}\sin(40^\circ)*\cos(25^\circ)} \\\\ && \boxed{ \dfrac{c}{b} = \dfrac{\sin(75^\circ)} {\sin(40^\circ)} } \\\\ \tan(D) &=& \dfrac{\sin(75^\circ)*\sin(25^\circ)}{\cos(40^\circ)-\sin(75^\circ)*\cos(25^\circ)} \\\\ D &=& -75^\circ~ \text{or}~ \mathbf{D=105^\circ} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \tan(E) &=& \dfrac{BE*\sin(15^\circ)}{BF-BE*\cos(15^\circ)} \\\\ \tan(E) &=& \dfrac{\dfrac{a*c}{b}*\sin(40^\circ)*\sin(15^\circ)}{c*\cos(40^\circ)-\dfrac{a*c}{b}\sin(40^\circ)*\cos(15^\circ)} \times \dfrac{c}{c}\\\\ \tan(E) &=& \dfrac{\dfrac{a}{b}*\sin(40^\circ)*\sin(15^\circ)}{\cos(40^\circ)-\dfrac{a}{b}\sin(40^\circ)*\cos(15^\circ)} \\\\ && \boxed{ \dfrac{a}{b} = \dfrac{\sin(65^\circ)} {\sin(40^\circ)} } \\\\ \tan(E) &=& \dfrac{\sin(65^\circ)*\sin(15^\circ)}{\cos(40^\circ)-\sin(65^\circ)*\cos(15^\circ)} \\\\ E &=& -65^\circ~ \text{or}~ \mathbf{E=115^\circ} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline x &=& 320^\circ-(D+E) \\ x &=& 320^\circ-(105^\circ+115^\circ) \\ x &=& 320^\circ-220^\circ \\ \mathbf{x} &=& \mathbf{100^\circ} \\ \hline \end{array}\)

 

laugh

14 янв. 2021 г.
 #3
avatar+26398 
+1
14 янв. 2021 г.