heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+3

Prove that \(3=\sqrt{1+2\sqrt{1+3 \sqrt{1+4 \sqrt{1+ \cdots}}}}\).

 

Source: https://www.quora.com/What-is-the-solution-of-sqrt-1+2-sqrt-1+3-sqrt-1+4-sqrt

 

\(\small{ \begin{array}{|rcll|} \hline n(n+2) &=& n\sqrt{(n+2)^2} \\ &=& n\sqrt{n^2+4n+4} \\ &=& n\sqrt{1+n^2+4n+3} \\ &=& n\sqrt{1+n^2+3n+n+3} \\ \mathbf{ n(n+2) } &=& \mathbf{ n\sqrt{1+(n+1)(n+3)} } \\ \hline f(n) &=& n(n+2) \\\\ f(n+1) &=& (n+1)(n+1+2 ) \\ f(n+1) &=& (n+1)(n+3) \\ \mathbf{ n(n+2) } &=& \mathbf{ n\sqrt{1+(n+1)(n+3)} } \\ f(n) &=& n\sqrt{1+f(n+1)} \\ && \boxed{f(n+1) = (n+1)\sqrt{1+f(n+1+1)}\\ f(n+1) = (n+1)\sqrt{1+f(n+2)} } \\ f(n) &=& n\sqrt{1+(n+1)\sqrt{1+f(n+2)}} \\ && \boxed{f(n+2) = (n+2)\sqrt{1+f(n+2+1)}\\ f(n+2) = (n+2)\sqrt{1+f(n+3)} } \\ f(n) &=& n\sqrt{1+(n+1)\sqrt{1+ (n+2)\sqrt{1+f(n+3)}}} \\ && \boxed{f(n+3) = (n+3)\sqrt{1+f(n+3+1)}\\ f(n+3) = (n+3)\sqrt{1+f(n+4)} } \\ f(n) &=& n\sqrt{1+(n+1)\sqrt{1+(n+2)\sqrt{1+(n+3)\sqrt{1+f(n+4)}}}} \quad | \quad f(n) = n(n+2)\\ n(n+2) &=& n\sqrt{1+(n+1)\sqrt{1+(n+2)\sqrt{1+(n+3)\sqrt{1+f(n+4)}}}} \quad | \quad n = 1 \\ 1(1+2) &=& 1*\sqrt{1+(1+1)\sqrt{1+(1+2)\sqrt{1+(1+3)\sqrt{1+\dots}}}} \\ 3 &=& \sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\dots}}}} \\ \hline \end{array} }\)

 

laugh

2 июн. 2021 г.
 #3
avatar+26398 
+2

if z is a complex number such that \(z+\dfrac{1}{z}= \sqrt{3}\)
what is the value of \(z^{2010}+\dfrac{1}{z^{2010}}\)?

 

1. \(|z| = ~?\)

\(\begin{array}{|rcll|} \hline z+\dfrac{1}{z}&=& \sqrt{3} \quad | \quad \text{Let $z=a+bi$} \\\\ a+bi+\dfrac{1}{a+bi}&=& \sqrt{3} \\\\ a+bi+\dfrac{1}{(a+bi)}*\dfrac{(a-bi)}{(a-bi)}&=& \sqrt{3}\quad | \quad (a+bi)*(a-bi)=|z|^2 \\\\ a+bi+\dfrac{a-bi}{|z|^2}&=&\sqrt{3} \\\\ \underbrace{ a+\dfrac{a}{|z|^2}}_{=\sqrt{3}}+ \underbrace{ bi-\dfrac{bi}{|z|^2} }_{=0}&=&\sqrt{3} \\\\ \hline bi-\dfrac{bi}{|z|^2} &=& 0 \\\\ bi &=& \dfrac{bi}{|z|^2} \\\\ |z|^2 &=& \dfrac{bi}{bi} \\\\ \mathbf{ |z|^2 } &=& \mathbf{1} \quad \text{or} \quad \mathbf{|z|=1} \\ \hline \end{array}\)

 

2. \(\varphi= ~?\)

\(\begin{array}{|rcll|} \hline z&=& |z|*e^{i\varphi} \quad | \quad |z|=1 \\ z&=& e^{i\varphi} \\ \mathbf{z}&=& \mathbf{\cos(\varphi)+i*\sin(\varphi)} \\ \hline \dfrac{1}{z}&=&z^{-1} \\ &=& \left( |z|*e^{i\varphi} \right)^{-1} \\ &=& |z|^{-1}* \left(e^{i\varphi}\right)^{-1} \\ &=& \dfrac{1}{|z|}*e^{i\varphi(-1)} \\ &=& \dfrac{1}{|z|}*e^{i(-\varphi} \quad | \quad |z|=1 \\ &=& e^{i(-\varphi} \\ &=& \cos(-\varphi)+i*\sin(-\varphi) \\ \mathbf{\dfrac{1}{z}} &=& \mathbf{\cos(\varphi)-i*\sin(\varphi)} \\ \hline z+\dfrac{1}{z} &=& \cos(\varphi)+i*\sin(\varphi)+\cos(\varphi)-i*\sin(\varphi) \\\\ z+\dfrac{1}{z} &=& 2\cos(\varphi) \quad | \quad z+\dfrac{1}{z} = \sqrt{3} \\ \sqrt{3} &=& 2\cos(\varphi) \\ \cos(\varphi) &=& \dfrac{\sqrt{3}}{2} \\\\ \mathbf{\varphi} &=& \mathbf{30^\circ} \\ \hline \end{array}\)

 

3. \(z^{2010}=~?\)

\(\begin{array}{|rcll|} \hline z^{2010} &=& \left( |z|*e^{i\varphi} \right)^{2010} \\ &=& |z|^{2010}* \left(e^{i\varphi}\right)^{2010} \\ &=& 1^{2010}*e^{i*2010\varphi} \\ &=& e^{i*2010\varphi} \\ &=& \cos(2010\varphi)+i*\sin(2010\varphi) \quad | \quad \varphi=30^\circ\\ &=& \cos(2010*30^\circ)+i*\sin(2010*30^\circ)\\ &=& \cos(180^\circ)+i*\sin(180^\circ)\\ \mathbf{z^{2010}}&=& \mathbf{-1} \\ \hline \end{array}\)

 

4. \(\dfrac{1}{z^{2010}}=~?\)

\(\begin{array}{|rcll|} \hline \dfrac{1}{z^{2010}} &=& \left( |z|*e^{i\varphi} \right)^{-2010} \\ &=& |z|^{-2010}* \left(e^{i\varphi}\right)^{-2010} \\ &=& 1^{-2010}* e^{i*(-2010\varphi)} \\ &=& e^{i*(-2010\varphi)} \\ &=& \cos(-2010\varphi)+i*\sin(-2010\varphi) \\ &=& \cos(2010\varphi)-i*\sin(2010\varphi) \quad | \quad \varphi=30^\circ\\ &=& \cos(2010*30^\circ)-i*\sin(2010*30^\circ) \\ &=& \cos(180^\circ)-i*\sin(180^\circ) \\ \mathbf{\dfrac{1}{z^{2010}}}&=& \mathbf{-1} \\ \hline \end{array}\)

 

\(z^{2010} + \dfrac{1}{z^{2010}} = -1+(-1) \\ z^{2010} + \dfrac{1}{z^{2010}} = -2 \)

 

laugh

1 июн. 2021 г.