heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #2
avatar+26398 
+4

In triangle ABC, points D and E lie on BC and AC, respectively.

If AD and BE intersect at T so that AT/DT = 3 and BT/ET = 4, what is CD/BD?
 

 

\( \text{Let $\vec{CA}=\vec{b}$} \\ \text{Let $\vec{CB}=\vec{a}$} \\ \text{Let $\mu = \dfrac{3}{4} = \dfrac{AT}{AD}$} \\ \text{Let $1-\mu = \dfrac{1}{4} = \dfrac{DT}{AD}$} \\ \text{Let $\rho = \dfrac{4}{5} = \dfrac{BT}{BE}$} \\ \text{Let $1-\rho = \dfrac{1}{5} = \dfrac{ET}{BE}$} \\ \text{Let $\lambda = \dfrac{BD}{BC} $} \\ \text{Let $1-\lambda = \dfrac{CD}{BC} $} \\ \text{Let $\mathbf{ \dfrac{1-\lambda}{\lambda} = \dfrac{CD}{BD}} $} \\ \text{Let $\epsilon = \dfrac{CE}{CA} $} \)

 

\(\text{In C-D-T-E} \\ \begin{array}{|rcll|} \hline (1-\lambda)\vec{a}+(1-\mu)[\vec{b}-(1-\lambda)\vec{a}] &=& \epsilon \vec{b} + (1-\rho)(\vec{a}-\epsilon \vec{b}) \\ (1-\lambda)\vec{a}+(1-\mu)\vec{b} -(1-\mu)(1-\lambda)\vec{a} &=& \epsilon \vec{b} + (1-\rho)\vec{a} - (1-\rho)\epsilon \vec{b}) \\ \vec{a}[(1-\lambda)-(1-\mu)(1-\lambda)-(1-\rho) ] &=& \vec{b} [\epsilon - (1-\rho)\epsilon -(1-\mu) ] \\ \vec{a}[(1-\lambda)\Big(1-(1-\mu)\Big)-(1-\rho) ] &=& \vec{b} [\epsilon - (1-\rho)\epsilon -(1-\mu) ] \\ \vec{a}[\underbrace{ (1-\lambda)\mu)-(1-\rho) }_{=0} ] &=& \vec{b} [\underbrace{ \epsilon - (1-\rho)\epsilon -(1-\mu) }_{=0} ] \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline (1-\lambda)\mu-(1-\rho) &=& 0 \\ (1-\lambda)\mu &=& (1-\rho) \\\\ \mathbf{ 1-\lambda } &=& \mathbf{\dfrac{(1-\rho)}{\mu} } \\ \hline 1-\lambda &=& \dfrac{(1-\rho)}{\mu} \\ \lambda &=& 1-\dfrac{(1-\rho)}{\mu} \\ \mathbf{ \lambda} &=& \mathbf{ \dfrac{\mu-(1-\rho)}{\mu} } \\ \hline \dfrac{CD}{BD} &=& \dfrac{1-\lambda}{\lambda} \\ \dfrac{CD}{BD} &=& \dfrac{\dfrac{(1-\rho)}{\mu}} {\dfrac{\mu-(1-\rho)}{\mu}} \\ \\ \dfrac{CD}{BD} &=& \dfrac{(1-\rho)} {\mu-(1-\rho)} \\ \\ \dfrac{CD}{BD} &=& \dfrac{\dfrac{1}{5}} {\dfrac{3}{4}-\dfrac{1}{5}} \\ \\ \dfrac{CD}{BD} &=& \dfrac{\dfrac{1}{5}} {\dfrac{11}{20}} \\ \\ \dfrac{CD}{BD} &=& \dfrac{1}{5} * \dfrac{20}{11} \\ \\ \mathbf{ \dfrac{CD}{BD}} &=& \mathbf{\dfrac{4}{11}} \\ \hline \end{array}\)

 

laugh

24 июн. 2021 г.
 #2
avatar+26398 
0

Find the number of paths from P to Q, where each step is to the right or up.

 

Answer here: https://www.quora.com/What-is-the-number-of-paths-from-P-to-Q-where-each-step-is-to-the-right-or-up

 

1. Number of permutations of rruuu   \(\dfrac{(2+3)!}{2!3!}=\dfrac{5!}{2!3!} = \mathbf{10}\)

 

2. Number of permutations of rrrruuu  \(\dfrac{(4+3)!}{4!3!}=\dfrac{7!}{4!3!} = \mathbf{35}\)

 

 

So in total there are \(10*35=350\) paths

 

laugh

23 июн. 2021 г.
 #1
avatar+26398 
+2

n is a four-digit positive integer.
Dividing n by 9, the remainder is 5.
Dividing n by 7, the remainder is 3.
Dividing n by 5, the remainder is 4.
What is the smallest possible value of n?

 

\(\begin{array}{|rcll|} \hline n &\equiv& {\color{red}5} \pmod{9} \\ n &\equiv& {\color{red}3} \pmod{7} \\ n &\equiv& {\color{red}4} \pmod{5} \\ \text{Let}~ m &=& 9*7*5 = 315 \\ \hline \end{array}\)

 

Because 9 and 7 and 5 are relatively prim \(\Big(\gcd(9,7,5)=1\Big)\),
we can go on.

 

\(\begin{array}{|rcll|} \hline n &=& {\color{red}5} *7*5*\dfrac{1}{7*5}\pmod{9} \\ && +{\color{red}3} *9*5* \dfrac{1}{9*5}\pmod{7} \\ && +{\color{red}4} *9*7* \dfrac{1}{9*7}\pmod{5} \\ && + 315k \quad | \quad k \in \mathbb{Z} \\\\ n &=& 175* \left(\dfrac{1}{35}\pmod{9}\right) \\ && +135*\left(\dfrac{1}{45}\pmod{7}\right) \\ && +252* \left(\dfrac{1}{63}\pmod{5}\right) \\ && + 315k \\\\ \hline \end{array} \begin{array}{|lcll|} \hline \dfrac{1}{35}\pmod{9} \quad | \quad 35 \equiv -1 \pmod{9} \\ \equiv \dfrac{1}{-1}\pmod{9} \\ \dfrac{1}{35}\pmod{9}\equiv -1\pmod{9} \\ \hline \dfrac{1}{45}\pmod{7} \quad | \quad 45 \equiv 3 \pmod{7} \\ \equiv \dfrac{1}{3}\pmod{7} \\ \equiv 3^{\phi(7)-1}\pmod{7} \\ \equiv 3^{6-1}\pmod{7} \\ \equiv 3^{5}\pmod{7} \\ \equiv 243 \pmod{7} \\ \dfrac{1}{45}\pmod{7} \equiv 5 \pmod{7} \\ \hline \dfrac{1}{63}\pmod{5} \quad | \quad 63 \equiv 3 \pmod{5} \\ \equiv \dfrac{1}{3}\pmod{5} \\ \equiv 3^{\phi(5)-1}\pmod{5} \\ \equiv 3^{4-1}\pmod{5} \\ \equiv 3^{3}\pmod{5} \\ \equiv 27 \pmod{5} \\ \dfrac{1}{63}\pmod{5}\equiv 2 \pmod{5} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline n &=& 175* \left(\dfrac{1}{35}\pmod{9}\right) \\ && +135*\left(\dfrac{1}{45}\pmod{7}\right) \\ && +252* \left(\dfrac{1}{63}\pmod{5}\right) \\ && + 315k \\\\ n &=& 175*(-1) +135*5 +252*2 + 315k \\ n&=& -175 +675 + 504 +315k \\ n &=& 1004 + 315k \quad | \quad 1004 \equiv 59 \pmod{315} \\ n &=& 59 + 315k \\ \mathbf{ n_{\text{min.}}} &=& \mathbf{ 59 } \\ \hline \end{array}\)

 

laugh

19 июн. 2021 г.