heureka

avatar
Имя пользователяheureka
Гол26398
Membership
Stats
Вопросов 17
ответы 5678

 #4
avatar+26398 
+8
13 мар. 2015 г.
 #1
avatar+26398 
+5

\[\binom40+\binom51+\binom62+\binom73.\]

 

If a diagonal of numbers of any length is selected starting at any of the 1's bordering the sides of the triangle and ending on any number inside the triangle on that diagonal, the sum of the numbers inside the selection is equal to the number below the end of the selection that is not on the same diagonal itself. If you don't understand that, look at the drawing.
1+6+21+56 = 84
1+7+28+84+210+462+924 = 1716
1+12 = 13

see: http://ptri1.tripod.com/

$$\small{\text{$\left( \begin{array}{c}4 \\ 0 \end{array} \right)$}}
+\small{\text{$\left( \begin{array}{c}5 \\ 1 \end{array} \right)$}}
+\small{\text{$\left( \begin{array}{c}6 \\ 2 \end{array} \right)$}}
+\small{\text{$\left( \begin{array}{c}7 \\ 3 \end{array} \right)$}}
=\small{\text{$\left( \begin{array}{c}8 \\ 3 \end{array} \right)$}}\\\\
\small{\text{
$\left( \begin{array}{c}8 \\ 3 \end{array} \right)
=\dfrac{8!}{3!\cdot 5!}
= \dfrac{\not{5!}\cdot 6 \cdot 7 \cdot 8 }{3!\cdot \not{5!}}
= \dfrac{6 \cdot 7 \cdot 8 }{3!}
= \dfrac{6 \cdot 7 \cdot 8 }{2\cdot 3}
=\dfrac{ 6 } { 3 }\cdot 7 \cdot \dfrac{ 8 } { 2 }
= 2\cdot 7 \cdot 4 \\
= 56
$}}$$

.
13 мар. 2015 г.
 #3
avatar+26398 
+5

Was ist die Funktion f(x)= (2x-1)*e^x aufgeleitet ?

$$\int{(2x-1)\cdot e^x} \ dx \\\\
=2\cdot \int{x\cdot e^x} \ dx - \int{ e^x} \ dx \quad | \quad \boxed{\int{ e^x} \ dx = e^x }\\\\
=2\cdot \int{x\cdot e^x} \ dx - e^x \\\\
\textcolor[rgb]{1,0,0}{
\small{\text{Wir l\"osen das $ \int{x\cdot e^x} \ dx $ mit partieller Integration }}
}\\\\\\
\small{\text{Wir wenden folgende Regel an : $
\boxed{\int{u\cdot v'} = u\cdot v - \int{u'\cdot v} } $}}\\\\
\small{\text{$\int{\underbrace{x}_{=u}\cdot \underbrace{e^x}_{=v'}} \ dx $}}\\ \\
\begin{array}{ll}
u = x & u' = 1 \\
v' = e^x & v = \int{v'} = \int{e^x}\ dx = e^x
\end{array}\\\\
\small{\text{$\int{\underbrace{x}_{=u}\cdot \underbrace{e^x}_{=v'}} \ dx = \underbrace{x}_{=u} \cdot \underbrace{e^x}_{=v} - \int{\underbrace{1}_{=u'}\cdot \underbrace{e^x}_{=v} }\ dx \\
$}}\\ \\
\small{\text{$\int{x \cdot e^x } \ dx = x \cdot e^x - \int{ e^x }\ dx
$}}\\ \\
\small{\text{$\int{x \cdot e^x } \ dx = x \cdot e^x - \underbrace{\int{ e^x }\ dx}_{=e^x}
$}}$$

$$\boxed{ \small{\text{$\int{x \cdot e^x } \ dx = x \cdot e^x - e^x
$}} }\\\\
\small{\text{
$
\int{(2x-1)\cdot e^x} \ dx \\
= 2\cdot \int{x\cdot e^x} \ dx - e^x
$}}\\
\small{\text{
$
\int{(2x-1)\cdot e^x} \ dx \\
= 2\cdot ( x \cdot e^x - e^x ) - e^x + c
$}}\\
\small{\text{
$\int{(2x-1)\cdot e^x} \ dx \\
= 2\cdot x \cdot e^x - 2 \cdot e^x - e^x + c
$}}\\
\small{\text{
$\int{(2x-1)\cdot e^x} \ dx \\
= 2\cdot x \cdot e^x - 3 \cdot e^x + c
$}} \\\\
\boxed{
\small{\text{
$\int{(2x-1)\cdot e^x} \ dx \\
= ( 2\cdot x - 3 ) \cdot e^x +c \
$}}
}$$

.
13 мар. 2015 г.