Thanks Heureka, 
Note that my answer is the same as Heureka's 
In triangle ABC, show
\(CA^2+CB^2=2CM^2+\frac{AB^2}{2}\)
Consider the triangle as I have drawn it and using Cosine rule.
\(a^2=d^2+x^2-2\;d\:x\;cos(180-Q)\\ a^2=d^2+x^2+2\;d\:x\;cos(Q)\qquad\qquad (1)\\~\\ b^2=d^2+x^2-2\;d\:x\;cos(Q)\qquad\qquad (2)\\ add\\ a^2+b^2=2d^2+2x^2\\ \text{Substituting original notation}\\ CB^2+CA^2=2(\frac{AB}{2})^2+2CM^2\\ CA^2+CB^2=2CM^2+2(\frac{AB^2}{4})\\ CA^2+CB^2=2CM^2+\frac{AB^2}{2}\\\)
